Math 125, Section E, Spring 2011, Solutions to Midterm I

1. Evaluate the following integrals.
(a) (4 points)

$$
\int_{0}^{1 / 2} t \sec ^{2}\left(t^{2}\right) d t
$$

After the substitution

$$
u=t^{2} \quad d u=2 t d t
$$

the integral becomes

$$
\int_{0}^{1 / 4} \frac{1}{2} \sec ^{2} u d u=\frac{1}{2} \tan \left(\frac{1}{4}\right)
$$

(b) (4 points)

$$
\int\left(e^{x}+e^{-x}\right)^{2} d x=\int e^{2 x}+2+e^{-2 x} d x=\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+C
$$

(c) (4 points)

$$
\int_{0}^{5} x \sqrt{x+4} d x
$$

After the substitution

$$
u=x+4 \quad d u=d x
$$

the integral becomes

$$
\int_{4}^{9}(u-4) \sqrt{u} \quad d u=\int_{4}^{9} u^{3 / 2}-4 u^{1 / 2} d u=\frac{2}{5} u^{5 / 2}-\left.\frac{8}{3} u^{3 / 2}\right|_{4} ^{9}=\frac{506}{15}
$$

2. (10 points) Define $g(x)=\int_{5}^{x} f(t) d t$ where f is the function whose graph is shown below. All the critical points of the graph have integer coordinates.
(a) $g(6)=3$, (b) $g(0)=-9$, (c) $g^{\prime}(8)=-3$, (d) $g^{\prime}(1)=1$
(e) $g^{\prime \prime}(2)=f^{\prime}(2)$ is not defined, (f) $g^{\prime \prime}(3)=f^{\prime}(3)=1$
(g) Let $h(x)=\int_{x}^{x^{2}} f(t) d t$. What is $h^{\prime}(2)$?

$$
h^{\prime}(x)=-f(x)+2 x f\left(x^{2}\right) \text { so } h^{\prime}(2)=11
$$

(h) $\int_{0}^{2} g(x) d x=\int_{0}^{2}(x-9) d x=-16$.
3. An object is moving along the x-axis with acceleration at time $t \geq 0$ given by

$$
a(t)=-\frac{60}{(t+3)^{2}} \mathrm{ft} / \mathrm{sec}^{2}
$$

The object has initial velocity $v(0)=5 \mathrm{ft} / \mathrm{sec}$.
(a) At what time does the object reverse direction?

$$
v(t)=\frac{60}{t+3}-15
$$

so the object reverses direction at $t=1$.
(b) What is the total distance travelled by the object from $t=0$ to $t=4$ seconds?

$$
\begin{gathered}
\text { distance }=\int_{0}^{4}|v(t)| d t=\int_{0}^{1} \frac{60}{t+3}-15 d t-\int_{1}^{4} \frac{60}{t+3}-15 d t \\
=\left(60 \ln (t+3)-\left.15 t\right|_{0} ^{1}\right)-\left(60 \ln (t+3)-\left.15 t\right|_{1} ^{4}\right) \\
=60 \ln \left(\frac{16}{21}\right)+30 \mathrm{ft}
\end{gathered}
$$

4. Let R be the region bounded above by the curve $y=-x^{2}+6$, on the right by $y=5 x$ and on the left by the y-axis.
(a) Sketch the region showing all relevant points of intersection.

(b) Find the volume of the solid obtained by rotating the region R about the line $y=7$.

$$
\begin{gathered}
\text { Volume }=\int_{0}^{1} \pi\left[(7-5 x)^{2}-\left(7-\left(-x^{2}+6\right)\right)^{2}\right] d x=\int_{0}^{1} \pi\left[(7-5 x)^{2}-\left(1+x^{2}\right)^{2}\right] d x \\
=\left.\pi \frac{(7-5 x)^{3}}{3(-5)}\right|_{0} ^{1}-\pi \int_{0}^{1} 1+2 x^{2}+x^{4} d x \\
=\pi\left(-\frac{2^{3}}{15}+\frac{7^{3}}{15}\right)-\pi\left(x+\frac{2}{3} x^{3}+\left.\frac{x^{5}}{5}\right|_{0} ^{1}\right)=\frac{307}{15} \pi
\end{gathered}
$$

