Math 125, Section A, Spring 2012, Solutions to Midterm II

1. Evaluate the following integrals.
(a)

$$
\int \frac{x}{\sqrt{3+2 x-x^{2}}} d x=\int \frac{x}{\sqrt{4-(x-1)^{2}}} d x
$$

using the substitution $x-1=2 \sin \theta$ we get

$$
\int 2 \sin \theta+1 d \theta=-2 \cos \theta+\theta+C=-\sqrt{3+2 x-x^{2}}+\sin ^{-1}\left(\frac{x-1}{2}\right)+C
$$

(b) Do the substitution $w=\sqrt{x}$ and then do integration by parts on the resulting integral

$$
\int e^{\sqrt{x}} d x=\int 2 w e^{w} d w=2 w e^{w}-2 e^{w}+C=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}+C
$$

2. Evaluate the following integrals.
(a) Do the substitution $u=\ln x$:

$$
\int_{1}^{e} \frac{(\ln x)^{2}}{x} d x=\int_{0}^{1} u^{2} d u=\frac{1}{3}
$$

(b) The integration techniques is partial fractions:

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{17}{6 x^{2}+13 x-5} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{3}{3 x-1}-\frac{2}{2 x+5} d x=\lim _{t \rightarrow \infty}\left[\ln |3 x-1|-\left.\ln |2 x+5|\right|_{1} ^{t}\right] \\
& \quad=\lim _{t \rightarrow \infty}\left[\ln \left|\frac{3 x-1}{2 x+5}\right|_{1}^{t}\right]=\lim _{t \rightarrow \infty}\left[\ln \left|\frac{3 t-1}{2 t+5}\right|-\ln \left|\frac{2}{7}\right|\right]=\ln \left|\frac{3}{2}\right|-\ln \left|\frac{2}{7}\right|=\ln \left(\frac{27}{4}\right)
\end{aligned}
$$

3. Use Simpson's rule with $n=6$ to estimate the length of the curve $y=x \sin x$ from $x=0$ to $x=\pi$. Give your answer in exact form (all trig functions should be evaluated) and as a decimal.

The arclength integral is

$$
\int_{0}^{\pi} \sqrt{1+(\sin x+x \cos x)^{2}} d x
$$

So Simpson's Rule with $n=6$ gives

$$
\left.\begin{array}{rl}
S_{6}= & \frac{\pi}{3 \cdot 6}\left[\sqrt{1}+4 \sqrt{1+\left(\sin \frac{\pi}{6}+\frac{\pi}{6} \cos \frac{\pi}{6}\right)^{2}}+2 \sqrt{1+\left(\sin \frac{2 \pi}{6}+\frac{2 \pi}{6} \cos \frac{2 \pi}{6}\right)^{2}}+4 \sqrt{1+\left(\sin \frac{3 \pi}{6}+\frac{3 \pi}{6} \cos \frac{3 \pi}{6}\right)^{2}}\right. \\
& \left.+2 \sqrt{1+\left(\sin \frac{4 \pi}{6}+\frac{4 \pi}{6} \cos \frac{4 \pi}{6}\right)^{2}}+4 \sqrt{1+\left(\sin \frac{5 \pi}{6}+\frac{5 \pi}{6} \cos \frac{5 \pi}{6}\right)^{2}}+\sqrt{1+(\sin \pi+\pi \cos \pi)^{2}}\right] \\
= & \frac{\pi}{18}\left[1+4 \sqrt{1+\left(\frac{1}{2}+\frac{\sqrt{3} \pi}{12}\right)^{2}}+2 \sqrt{1+\left(\frac{\sqrt{3}}{2}+\frac{\pi}{6}\right)^{2}}+4+2 \sqrt{1+\left(\frac{\sqrt{3}}{2}-\frac{\pi}{3}\right)^{2}}+4 \sqrt{1+\left(\frac{1}{2}-\frac{5 \sqrt{3} \pi}{12}\right)^{2}}+\sqrt{1+\pi^{2}}\right.
\end{array}\right]
$$

4. The giants are building a sandcastle for their queen. It is in the shape of a frustrum of a cone (a cone with its top cut off) whose base radius is 10 m , the top radius is 6 m and height is 15 m . Sand of density $1800 \mathrm{~kg} / \mathrm{m}^{3}$ is carried from ground level. Find the work done. The acceleration due to gravity is approximately $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Let y be the height of a slice measured from ground level. Then the radius of the slice using similar triangles is $r=10-\frac{4}{15} y$. Then the work done is

$$
W=17640 \pi \int_{0}^{15}\left(10-\frac{4}{15} y\right)^{2} y d y=-17640 \pi \int_{10}^{6} r^{2}(10-r) \frac{15^{2}}{4^{2}} d r=\frac{496125 \pi}{2} \int_{6}^{10} 10 r^{2}-r^{3} d r=\frac{325458000 \pi}{3} \text { Joules }
$$

