Math 125, Section I, Winter 2011, Midterm I

January 27, 2011

Name
TA/Section

Instructions.

- There are 4 questions. The exam is out of 40 points.
- You are allowed to use one page of notes written only on one side of the sheet in your own handwriting. Hand in your notes with your exam paper.
- You may use a calculator which does not graph and which is not programmable. Even if you have a calculator, give me exact answers. ($\frac{2 \ln 3}{\pi}$ is exact, 0.7 is an approximation for the same number.)
- Show your work. If I cannot read or follow your work, I cannot grade it. You may not get full credit for a right answer if your answer is not justified by your work. If you continue at the back of a page, make a note for me. Please BOX your final answer.

Question	points
1	
2	
3	
4	
Total	

1. Evaluate the following integrals.
(a) (5 points)

$$
\int_{0}^{3} t^{3} \sqrt{1+t^{4}} d t
$$

(b) (5 points)

$$
\int \frac{x+3}{\sqrt{x+1}} d x
$$

2. Define $g(x)=\int_{0}^{x} f(t) d t$ where f is the function whose graph is shown below.

(a) At what values of x does g have a local maximum? (2 points)
(b) At what values of x does g have a local minimum? (2 points)
(c) On what intervals is g concave up? The endpoints can be approximate here. (3 points)
(d) Sketch a graph of $y=g(x)$. (3 points)

3. Let R be the region in the first quadrant bounded below by the x axis, bounded on the left by the parabola $y=-x^{2}+4 x$ and bounded on the right by the line $y=-2 x+5$.
(a) Sketch the region R. (2 points)
(b) Estimate the area of the region with $n=5$ and left points. (3 points)
(c) Find the exact area of the region. What was you percentage error in your estimation above? (5 points)
4. Let R be the region bounded by the curves $y=x^{3}$ and $y=3 x-2 * x^{2}$ in the first quadrant as shown below.

(a) Set up and integral to find the volume of the region obtained by rotating the region R about the y axis. Do not evaluate the integral. (5 points)
(b) Set up and integral to find the volume of the region obtained by rotating the region R about the line $y=2$. Do not evaluate the integral. (5 points)
