Math 125, Section I, Winter 2011,Solutions to Midterm I

1. Evaluate the following integrals.
(a)

$$
\begin{gathered}
\int_{0}^{3} t^{3} \sqrt{1+t^{4}} d t \\
u=1+t^{4} d u=4 t^{3} d t \\
\int_{0}^{3} t^{3} \sqrt{1+t^{4}} d t=\int_{1}^{82} \frac{1}{4} \sqrt{u} d u=\left.\frac{1}{6} u^{3 / 2}\right|_{1} ^{82}=\frac{82^{3 / 2}-1}{6}
\end{gathered}
$$

(b) Here the substitutions $u=x+1$ or $u=\sqrt{x+1}$ both work. If $u=x+1$, the $d u=d x$ so

$$
\int \frac{x+3}{\sqrt{x+1}} d x=\int \frac{u+2}{\sqrt{u}} d u=\frac{2}{3} u^{3 / 2}+4 \sqrt{u}+C=\frac{2}{3}(x+1)^{3 / 2}+4 \sqrt{x+1}+C
$$

2. Define $g(x)=\int_{0}^{x} f(t) d t$ where f is the function whose graph is shown below.
(a) At what values of x does g have a local maximum? 3,9
(b) At what values of x does g have a local minimum? 6, 12
(c) On what intervals is g concave up? The endpoints can be approximate here. Since $g^{\prime \prime}(x)=f^{\prime}(x)$, the graph of g is concave up when $f^{\prime}>0$ so when f is increasing. The intervals approximately are $[0,2.2],[4.8,7.8]$ and $[10.5,12]$.
(d) Sketch a graph of $y=g(x)$. For the sketch, you have to approximate the areas under the graphs of f. You can use several rectangles or triangles. Below is the graph of g.

3. Let R be the region in the first quadrant bounded below by the x axis, bounded on the left by the parabola $y=-x^{2}+4 x$ and bounded on the right by the line $y=-2 x+5$.
(a) Sketch the region R.

(b) Estimate the area of the region with $n=5$ and left points.

Here $\Delta x=1 / 2$. If $f(x)=-x^{2}+4 x$ and $g(x)=-2 x+5$ the area estimate is

$$
[f(0)+f(1 / 2)+f(1)+g(3 / 2)+g(2)] \times \frac{1}{2}=\frac{31}{8}
$$

(c) Find the exact area of the region. What was you percentage error in your estimation above? (5 points)

$$
\int_{0}^{1}-x^{2}+4 x d x+\int_{1}^{5 / 2}-2 x+5 d x=\frac{47}{12}
$$

4. Let R be the region bounded by the curves $y=x^{3}$ and $y=3 x-2 x^{2}$ in the first quadrant as shown below.

(a) Set up and integral to find the volume of the region obtained by rotating the region R about the y axis. Do not evaluate the integral.
Using cylndrical shells the volume is

$$
\int_{0}^{1} 2 \pi x\left[\left(3 x-2 x^{2}\right)-x^{3}\right] d x
$$

(b) Set up and integral to find the volume of the region obtained by rotating the region R about the line $y=2$. Do not evaluate the integral.
Using disks/washers the volume is

$$
\int_{0}^{1} \pi\left[\left(2-x^{3}\right)^{2}-\left(2-\left(3 x-2 x^{2}\right)\right)^{2}\right] d x
$$

