Math 126, Section C, Autumn 2012, Midterm I

October 18, 2012

Name
TA/Section

Instructions.

- There are 4 questions. The exam is out of 40 points.
- You are allowed to use one page of notes written only on one side of the sheet in your own handwriting. Hand in your notes with your exam paper.
- You may use a calculator which does not graph and which is not programmable. Even if you have a calculator, give me exact answers. ($\frac{2 \ln 3}{\pi}$ is exact, 0.7 is an approximation for the same number.)
- Show your work. If I cannot read or follow your work, I cannot grade it. You may not get full credit for a right answer if your answer is not justified by your work. If you continue at the back of a page, make a note for me. Please BOX your final answer.

Question	points
1	
2	
3	
4	
Total	

1. Answer the following question regarding the picture below

We know $\overrightarrow{A C}=\langle 2,6,2\rangle, \overrightarrow{B D}=\langle 4,0,-2\rangle$ and $A=(0,2,-1)$.
(a) (4 points) Compute the two vectors $\mathbf{u}=\overrightarrow{A B}=\overrightarrow{D C}$ and $\mathbf{v}=\overrightarrow{A D}=\overrightarrow{B C}$.
(b) (3 points) Find the coordinates of the points B and C.
(c) (3 points) The line containing B and E is perpendicular to the line containing A to D as shown in the picture. Find the coordinates of the point E.
2. Given two planes

$$
P 1: \quad 2 x-y+z=5
$$

and

$$
P 2: \quad 3 x+2 y-z=3,
$$

(a) (6 points) Find parametric equations for the line of intersection of the two planes. Check that your line is indeed on both planes.
(b) (3 points) Find the equation of a third plane $P 3$ which contains that line and the point $P(0,7,2)$.
(c) (1 point) Find the line of intersection of the planes $P 1$ and $P 3$.
3. Answer the following.
(a) (6 points) Match the following vector functions with the curves they trace in space. The positive z-axis points up in the graphs. Write the letter of the graph next to the corresponding vector function.

$$
\begin{array}{lll}
\mathbf{r}_{\mathbf{1}}(t)=\langle t+3,2 t-1,-t+4\rangle & \mathbf{r}_{\mathbf{2}}(t)=\langle 2 t+3,2 t-1, t+4\rangle & \mathbf{r}_{\mathbf{3}}(t)=\left\langle t \cos (t), t, \frac{t \sin (t)}{2}\right\rangle \\
\mathbf{r}_{\mathbf{4}}(t)=\langle t, \sin (t), 0\rangle & \mathbf{r}_{\mathbf{5}}(t)=\left\langle t+1,2 t^{2}-5 t+1, t^{3}\right\rangle & \mathbf{r}_{\mathbf{6}}(t)=\left\langle\cos (t), 10 t, \frac{\sin (t)}{2}\right\rangle
\end{array}
$$

(b) (4 points) Find the vector equation of the tangent line to $\mathbf{r}(t)=\left\langle t+1,2 t^{2}-5 t+1, t^{3}\right\rangle$ at the point where $t=2$.
4. Given the equation

$$
x^{2}-4 y^{2}+4 z^{2}+8 y=4
$$

(a) (5 points) Identify the surface and sketch it. Label your axes so I can see the orientation. Label any points you think are important, for example, if you have a sphere, label its center.
(b) (4 points) Find the point(s) of intersection of the above surface and the line given by

$$
x=8 t \quad y=5 t+1 \quad z=3-t
$$

(c) (1 point) Write one vector function which gives a curve on this cone. There are many answers to this question.

