
Math 126, Sections D and F, Spring 2012, Solutions to Midterm I

1. The following questions regard the parallelpiped shown below.The figure is not to scale. The following
vectors are known: ~AC = 〈0, 5, 2〉, ~AD = 〈−14, 3, 7〉 and ~AB = 〈1, 3, 4〉.

(a) (4 points) Compute the vector ~CD and the angle between ~AC and ~CD .

~AC + ~CD = ~AD

so
~CD = 〈−14, 3, 7〉 − 〈0, 5, 2〉 = 〈−14,−2, 5〉

To find the angle we compute

~AC · ~CD = 〈0, 5, 2〉 · 〈−14,−2, 5〉 = 0− 10 + 10 = 0

so the angle is π/2.

(b) (4 points) Compute the area of the triangle with vertices A, C and D.
Since the triangle is a right triangle the area is

A =
1

2
| 〈0, 5, 2〉 || 〈−14,−2, 5〉 | =

√
29
√

225

2
=

15
√

29

2
.

(c) (3 points) If the point A is at (2, 1, 0), find the coordinates of the point Y .
First we compute

~BC = ~AC − ~AB =< 0, 5, 2 > − < 1, 3, 4 >=< −1, 2,−2 >

then
~AY = ~BC + ~CD =< −1, 2,−2 > + < −14,−2, 5 >=< −15, 0, 3 >

so the point Y is at (−13, 1, 3).
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2. For the following pairs of line and plane equations, write one of SKEW, PERPENDICULAR, PAR-
ALLEL or THE SAME to finish each sentence. (2 points each. 1 point for the answer, 1 point for a
brief explanation or computation.)

(a) The planes x+ y − z = 3 and 2x+ 2y − 2z = 6 are THE SAME.
because on equation is twice the other.

(b) The planes 2x− 4y + 6z = 7 and −x+ 2y − 3z = 9 are PARALLEL.
because their normal vector are parallel but one equation is not a multiple of the other.

(c) The lines r1(t) = 〈4, 1 + t, 3〉 and r2(t) = 〈t, 2t, 5t〉 are SKEW.
the direction vector are not parallel and the lines do not intersect since < 4, 1+s, 3 >=< t, 2t, 5t >
is not possible.

(d) The lines r1(t) = 〈2− 3t, 4 + t, 7 + 2t〉 and r2(t) = 〈5 + 6t, 3− 2t, 5− 4t〉 are THE SAME.
THe direction vectors are paralle and they have at least one common point.

(e) The plane 4x− 7y + z = 3 and the line r(t) = 〈4t, 8− 7t, 5 + t〉 are PERPENDICULAR.
The normal of the plane and the direction vector of the line are parallel.
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3. Answer the following questions about space curves.

(a) (1 point each) Match the following vector functions with the space curves they represent. Think
of the surfaces they are on to help you identify the graphs. Write the letter of the graph next to
the equation.

r1(t) = 〈t, 3 + 4 sin(t), 4〉 C r2(t) = 〈sin(t) cos(14t), sin(t) sin(14t), cos(t)〉 A

r3(t) =
〈
t cos(5t), t2, t sin(5t)

〉
B r4(t) =

〈
t2 + 1, t, t3 − 6t+ 4

〉
D

The labels x, y and z are next to the positive axes.

(b) (5 points) Find parametric equations of the tangent line to the curve given by r1(t) = 〈t, 3 + 4 sin(t), 4〉
at the point (0, 3, 4).

r′1(t) =< 1, 4 cos t, 0 >

so the direction vector is r′(0) =< 1, 4, 0 > and the line equation is

r(t) =< 0, 3, 4 > +t < 1, 4, 0 >

so x = t, y = 3 + 4t, z = 4.
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4. Answer the following.

(a) (4 points) Identify the following surface and make a sketch of it. Your picture does not have to
be drawn to scale. I am only interested in seeing the shape and orientation.

x2 + 4y2 − 24y − 4z + 20 = 0

When you complete the square and rearrange the equation you get(
x2

2

)
+ (y − 3)2 = z + 4

which is an elliptic paraboloid openning up in the positive z direction whose lowest point is at
(0, 3,−4).

(b) (6 points) Find the equation of the tangent lines to the three leaved rose r = sin(3θ) at the point
A which at the tip of its left petal as marked with a dot in the picture.

Compute
dy

dx
=

d
dθ (r sin θ)
d
dθ (r cos θ)

=
3 cos 3θ sin θ + sin 3θ cos θ

2 cos 3θ cos θ − sin 3θ sin θ

The tips of the petals is when r = ±1 so when 3θ = π/2, 3π/2, 5π/2,...If your trace the shape
in the direction of increasing θ you see that point A is when 3θ = 5π/2 or when θ = 5π/6.
Plugging that we get the slope is

√
3 and the point A is at x = r cos θ = sin 3θ cos θ = −

√
3/2 and

y = r sin θ = sin 3θ sin θ = 1/2 so the tangent line is

y − 1

2
=
√

3

(
x+

√
3

2

)
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