## Math 126, Section D, Winter 2010, Solutions to Midterm II

1. Answer the following questions about the vector function

$$
\mathbf{r}(t)=\langle 3 \sin (t), t, 3 \cos (t)\rangle
$$

(a) Find the length of the curve traced by this vector function from the point $(0,0,3)$ to the point $\left(\frac{3 \sqrt{3}}{2}, \frac{\pi}{3}, \frac{3}{2}\right)$.

$$
s=\int_{0}^{\pi / 3}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{\pi / 3} \sqrt{(3 \cos t)^{2}+1^{2}+(-3 \sin t)^{2}} d t==\int_{0}^{\pi / 3} \sqrt{10} d t=\frac{\pi \sqrt{10}}{3}
$$

(b) Find the curvature at the point $\left(\frac{3 \sqrt{3}}{2}, \frac{\pi}{3}, \frac{3}{2}\right)$.

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}=\frac{|\langle 3 \cos t, 1,-3 \sin t\rangle \times\langle-3 \sin t, 0,-3 \cos t\rangle|}{|\langle 3 \cos t, 1,-3 \sin t\rangle|^{3}}=\frac{|\langle-3 \cos t, 9,3 \sin t\rangle|}{10^{3 / 2}}=\frac{\sqrt{90}}{10^{3 / 2}}=\frac{3}{10} .
$$

2. Evaluate the following integrals.
(a)

$$
\iint x\left(x^{2}+y^{2}\right)^{3 / 2} d A
$$

over the region $R$ between the lines $y=x, y=\sqrt{3} x$ and the curve $y=\sqrt{9-x^{2}}$.
Here it is easier to use polar coordinates:

$$
\int_{\pi / 4}^{\pi / 3} \int_{0}^{3}(r \cos \theta) r^{3} \cdot r d r d \theta=\left.\left.\frac{r^{6}}{6}\right|_{0} ^{3} \cdot \sin \theta\right|_{\pi / 4} ^{\pi / 3}=\frac{243(\sqrt{3}-\sqrt{2})}{4}
$$

(b)

$$
\int_{0}^{4} \int_{y / 4}^{1} y \ln \left(x^{3}+1\right) d x d y
$$

In this problem we have to change the order of integration. The region is inside the triangle with vertices $(0,0),(1,0)$ and $(1,4)$.
$\int_{0}^{1} \int_{0}^{4 x} y \ln \left(x^{3}+1\right) d y d x=\int_{0}^{1} 8 x^{2} \ln \left(x^{3}+1\right) d x=\left.\frac{8}{3}\left[\left(x^{3}+1\right) \ln \left(x^{3}+1\right)-\left(x^{3}+1\right)\right]\right|_{0} ^{1}=\frac{8(2 \ln 2-1)}{3}$
3. Let

$$
f(x, y)=(\sqrt{x}+\sqrt{y})^{2}
$$

(a) Find the equation of the tangent plane to $z=f(x, y)$ at the point $(16,100,196)$.

$$
\begin{array}{cc}
f_{x}(x, y)=\frac{(\sqrt{x}+\sqrt{y})}{\sqrt{x}} & f_{y}(x, y)=\frac{(\sqrt{x}+\sqrt{y})}{\sqrt{y}} \\
f_{x}(16,100)=\frac{(\sqrt{16}+\sqrt{100})}{\sqrt{16}}=\frac{7}{2} & f_{y}(16,100)=\frac{(\sqrt{16}+\sqrt{100})}{\sqrt{100}} \frac{7}{5}
\end{array}
$$

so the tangent plane has equation

$$
z-196=\frac{7}{2}(x-16)+\frac{7}{5}(y-100)
$$

(b) Approximate $(\sqrt{15}+\sqrt{99})^{2}$ using linear approximation.

$$
f(x, y) \approx 196+\frac{7}{2}(x-16)+\frac{7}{5}(y-100)
$$

So

$$
f(15,99) \approx 196+\frac{7}{2}(15-16)+\frac{7}{5}(99-100)=\frac{1911}{10}=191.1
$$

4. Find and classify all critical points of the function

$$
f(x, y)=3 x-x^{3}-6 x y^{2} .
$$

Finding the critical points:

$$
f_{x}(x, y)=3-3 x^{2}-6 y^{2}=0 \quad f_{y}(x, y)=-12 x y=0
$$

From the second equation, $x=0$ or $y=0$. If $x=0$, the first equation gives $y= \pm \frac{\sqrt{2}}{2}$ so $\left(0, \frac{\sqrt{2}}{2}\right)$ and $\left(0,-\frac{\sqrt{2}}{2}\right)$ are critical points. If $y=0$, the first equation gives $3-3 x^{2}=0$ so $x= \pm 1$ giving us the critical points $(1,0)$ and $(-1,0)$. To classify them we need the second order derivatives:

$$
f_{x x}(x, y)=-6 x \quad f_{x y}(x, y)=-12 y \quad f_{y y}(x, y)=-12 x
$$

and the discriminant is

$$
D(x, y)=72 x^{2}-144 y^{2}
$$

At $\left(0, \frac{\sqrt{2}}{2}\right), D\left(0, \frac{\sqrt{2}}{2}\right)=-72$ so that point is a saddle.
At $\left(0,-\frac{\sqrt{2}}{2}\right), D\left(0,-\frac{\sqrt{2}}{2}\right)=-72$ so that point is also a saddle.
At $(1,0), D(1,0)=72$ and $f_{x x}(1,0)=-6$ so it is a maximum.
At $(-1,0), D(-1,0)=72$ and $f_{x x}(-1,0)=6$ so it is a minimum.

