Do you remember your rules of differentiation?

1. Find y^{\prime} for the following:
(a) $y=4 x^{3}-7 x^{2}+19$
(b) $y=\sqrt{x}-\frac{2}{x^{3}}+e^{x}$
(c) $y=\left(x^{2}+5\right)^{3}$
(d) $y=\sin ^{5} x$
(e) $y=x e^{x}$
(f) $y=\cos ^{4}\left(x^{2}\right)$
2. Now try to go backwards. Find y given the y^{\prime}. Make your best guess and check your answer.
(a) $y^{\prime}=7 x^{4}+5 x+2$
(b) $y^{\prime}=3 \sqrt{x}+\frac{4}{x^{2}}-e^{x}$
(c) $y^{\prime}=12 x^{2}\left(x^{3}+7\right)^{3}$
(d) $y^{\prime}=4 \sin ^{3} x \cos x$
(e) (tricky) $y^{\prime}=x e^{x}$
(f) $y^{\prime}=6 x \cos ^{2}\left(x^{2}\right) \sin \left(x^{2}\right)$
3. Find the position function $s(t)$ if the acceleration is $a(t)=3$, the initial velocity is $v(0)=2$ and the initial position is $s(0)=1$.
