Math 134, Fall 2014, Midterm 2 Review

First, go over your homework problems. Look at the solutions for those problems that were not graded and compare with yours. Make sure you understand all of the proof questions.

Computational Problems

1. Computing derivatives: Exercises 13-22 in Chapter 7 Review.
2. Evaluating integrals : Exercises $23-38$ in Chapter 7 Review and 1-38 in Section 8.1. First half of Section 8.1 is review of 5.7 together with the transcendental functions.
3. Related rates problems. Besides the ones in the book, check out the second midterms and final exams of Math 124 at http://www.math.washington.edu/ ebekyel/Archives/
4. Differentials: Exercises 54-58 in Chapter 4 Review.
5. Work problems. Besides the ones in the book, check out the second midterms and final exams of Math 125 at the same page.
6. Volume and area computations. Besides the ones in the book, check out the first midterms and final exams of Math 125. Here are some more:
(a) Let T be the triangle with vertices $(0,0),(1,-1)$ and $(1,1)$. Determine the volume of the solid obtained by rotating T about the line $y=-x$.
(b) The base of a solid is the disk of radius $r>0$ bounded by the circle $x^{2}+y^{2}=r^{2}$. The cross sections of the solid perpendicular to the x-axis are squares. Find the volume of the solid.
(c) The region in the first quadrant bounded by the positive x-axis, the positive y-axis and the curve $y=16-x^{4}$ is revolved around the y-axis. Set up the integral to find the volume of the solid by both the disc method and the shell method. Find the volume by evaluating each of the integrals.
7. Prove that $\frac{d}{d x} \cot ^{-1} x=\frac{-1}{1+x^{2}}$.
8. Find the average value of $f(x)=\frac{\cos (x / 2)}{3+\sin (x / 2)}$ on the interval $[-\pi, \pi]$.

Theorems and Their Applications

Know the definition of the definite integral, the definition of the indefinite integral, the definition of the inverse of a function. Know the precise statements of the important theorems. Go over the proofs we did in class and make sure you can follow them. If you use them to prove something, be sure to verify the hypotheses of the theorems you use. Some of the important theorems are:

- Covered on last midterm, but you still need to remember them:

Intermediate Value Theorem (B.1.2), Extreme Value Theorem (B.2.2), The Mean Value Theorem (4.1.1), The Chain Rule (3.5.6), Tests for local extrema (the first and second derivative tests).

- New this time:

The Integrability Theorem (B.4.6), The Fundamental Theorem of Calculus (Theorems 5.3.5 and 5.4.2 - be able to prove 5.3.5), The Mean Value Theorem for Integrals (5.9.3), Continuity of the Inverse (B.3.1), Differentiability of the Inverse (B.3.2).

Problems Using the Theorems

1. Compute $f^{\prime}(x)$ for $f(x)=\int_{\ln x}^{\cos 3 x} \frac{d t}{t^{8}+1}$. Which of the above theorems did you use?
2. The error function is defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

(a) What is the domain of $\operatorname{erf}(x)$? Prove that $\operatorname{erf}(x)$ is a one-to-one, increasing, differentiable function on its domain.
(b) Show that $\operatorname{erf}(x)$ has a differentiable inverse.
(c) Show that $\operatorname{erf}(x)$ is bounded from below and above. Hint: Compare $f(x)=\int_{1}^{x} t e^{-t^{2}} d t$ and $\int_{1}^{x} e^{-t^{2}} d t$
(d) Sketch a graph of $\operatorname{erf}(x)$.

NOTE: Use some of the theorems mentioned above.
3. Express the following as a definite integral and evaluate it:

$$
\lim _{n \rightarrow \infty}\left\{\frac{e^{1 / n}}{n}+\frac{e^{2 / n}}{n}+\frac{e^{3 / n}}{n}+\cdots+\frac{e^{(2 n-1) / n}}{n}+\frac{e^{2 n / n}}{n}\right\}
$$

4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous even function (i.e. $f(-x)=f(x)$). Prove that the function $F: \mathbf{R} \rightarrow \mathbf{R}$ given by

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is a continuous (in fact differentiable) odd function (i.e. $F(-x)=-F(x)$).
5. Let $0<k<1$ be a constant. The Incomplete Elliptic Integral of the Second Kind is the function $E_{k}: \mathbf{R} \rightarrow \mathbf{R}$ defined by the formula

$$
E_{k}(x)=\int_{0}^{x} \sqrt{1-k^{2} \sin ^{2} s} d s
$$

(a) Prove that $E_{k}(x)$ is differentiable.
(b) Prove that $E_{k}^{\prime}(x)>0$ for all x. What does this tell you about the inverse function $E_{k}^{-1}(x)$?
(c) Does the graph of E_{k} have any points of inflection? Explain.
6. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Suppose further that there is a constant $K>0$ such that

$$
\left|f^{\prime}(x)\right| \leq K \text { for all } x \in(a, b)
$$

Show that

$$
U_{f}(P)-L_{f}(P) \leq(b-a) K P
$$

where $P=\max _{i} \Delta x_{i}$.
Hint: Use the Mean-Value Theorem to show that $M_{i}-m_{i} \leq K \Delta x_{i}$.

