In class, we proved that if a continuous function is increasing on its interval, then its inverse is also increasing and continuous. Similarly, if a continuous function is decreasing on its interval, then its inverse is also decreasing and continuous. To finish the proof of Theorem 7.1.6, we need to prove the following:

Lemma If f is continuous and one-to-one on (a, b), then it is increasing on (a, b) or it is decreasing on (a, b).

Proof: Assume f is continuous and one-to-one on (a, b).
Let $x_{1}, x_{2} \in(a, b)$ such that $x_{1}<x_{2}$. Then since f is one-to-one, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Now, we have two cases:
Case I: $f\left(x_{1}\right)<f\left(x_{2}\right)$. We'll prove in this case that f is increasing on (a, b). Let $s_{1}, s_{2} \in(a, b)$ such that $s_{1}<s_{2}$. Define two functions

$$
g_{1}(t)=t s_{1}+(1-t) x_{1} \quad \text { and } \quad g_{2}(t)=t s_{2}+(1-t) x_{2}
$$

where $0 \leq t \leq 1$. So both $g_{1}(t)$ and $g_{2}(t)$ are defined on the closed and bounded interval $[0,1]$.
To complete the proof, do the following steps:

1. Show that $a<g_{1}(t)<b$ and $a<g_{2}(t)<b$ for any $t \in[0,1]$.
2. Show that $g_{1}(t)<g_{2}(t)$ for any $t \in[0,1]$.

So now we have

$$
a<g_{1}(t)<g_{2}(t)<b, \text { for any } t \in[0,1] .
$$

Define

$$
h(t)=f\left(g_{2}(t)\right)-f\left(g_{1}(t)\right), 0 \leq t \leq 1
$$

3. Show that $h(0)>0$.
4. Show that $h(t) \neq 0$, for any $t \in[0,1]$.
5. Show that $h(t)>0$ for any $t \in[0,1]$.

6 . Prove that $f\left(s_{1}\right)<f\left(s_{2}\right)$.
So, f is increasing. This concludes Case I.

Case II: Assume $f\left(x_{1}\right)>f\left(x_{2}\right)$. Let $g(x)=-f(x)$.
7. Show that g is continuous and one-to-one and that $g\left(x_{1}\right)<g\left(x_{2}\right)$.

Let $a<s_{1}<s_{2}<b$. We can apply the argument in Case I to $g(x)$ and conclude that $g\left(s_{1}\right)<g\left(s_{2}\right)$. Then, $f\left(x_{1}\right)>f\left(x_{2}\right)$ and f is decreasing, finishing Case II.
Therefore, in any case, f is either increasing on (a, b) or decreasing on (a, b).

