To prove Theorem 5.3.1, which implies Lemma B.4.5 as we saw in class, we will first prove a Lemma. Then, you will use this in an induction to prove the Theorem as part of your homework.

Lemma Suppose f is continuous on $[a, b]$. Let P be a partition of $[a, b]$. Let $y \in[a, b]$ such that $y \notin P$. Then,

$$
L_{f}(P) \leq L_{f}(P \cup\{y\}) \quad \text { and } \quad U_{f}(P \cup\{y\}) \leq L_{f}(P)
$$

Proof: Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, m_{i}$ be the minimum value of f on $\left[x_{i-1}, x_{i}\right], M_{i}$ be the maximum value of f on $\left[x_{i-1}, x_{i}\right]$, and $\Delta x_{i}=x_{i}-x_{i-1}$. Then

$$
L_{f}(P)=m_{1} \Delta x_{1}+\ldots+m_{n} \Delta x_{n} \quad \text { and } \quad U_{f}(P)=M_{1} \Delta x_{1}+\ldots+M_{n} \Delta x_{n}
$$

Now, since $y \in[a, b]$ but $y \notin P, x_{i-1}<y<x_{i}$ for some $1 \leq i \leq n$. Then, let A be the maximum value of f on $\left[x_{i-1}, y\right]$, let B be the maximum value of f on $\left[y, x_{i}\right]$, let a be the minimum value of f on $\left[x_{i-1}, y\right]$ and let b be the minimum value of f on $\left[y, x_{i}\right]$. Clearly, $A \leq M_{i}, B \leq M_{i}$ being the maximums over smaller domains and $a \geq m_{i}$ and $b \geq m_{i}$, being the minimums over smaller domains. Now, the two lower sums $L_{f}(P)$ and $L_{f}(P \cup\{y\})$ only differ on the interval which contains y so
$L_{f}(P \cup\{y\})-L_{f}(P)=a\left(y-x_{i-1}\right)+b\left(x_{i}-y\right)-m_{i} \Delta x_{i} \geq m_{i}\left(y-x_{i-1}\right)+m_{i}\left(x_{i}-y\right)-m_{i} \Delta x_{i}=m_{i}\left(x_{i}-x_{i-1}-\Delta x_{i}\right)=0$
so

$$
L_{f}(P \cup\{y\}) \geq L_{f}(P)
$$

and the two upper sums $U_{f}(P)$ and $U_{f}(P \cup\{y\})$ also only differ on the interval which contains y so
$U_{f}(P \cup\{y\})-U_{f}(P)=A\left(y-x_{i-1}\right)+B\left(x_{i}-y\right)-M_{i} \Delta x_{i} \leq M_{i}\left(y-x_{i-1}\right)+M_{i}\left(x_{i}-y\right)-m_{i} \Delta x_{i}=M_{i}\left(x_{i}-x_{i-1}-\Delta x_{i}\right)=0$
so

$$
U_{f}(P \cup\{y\}) \leq U_{f}(P) .
$$

