To prove **Theorem 5.3.1**, which implies **Lemma B.4.5** as we saw in class, we will first prove a **Lemma**. Then, you will use this in an induction to prove the Theorem as part of your homework.

Lemma Suppose f is continuous on [a, b]. Let P be a partition of [a, b]. Let $y \in [a, b]$ such that $y \notin P$. Then,

$$L_f(P) \le L_f(P \cup \{y\})$$
 and $U_f(P \cup \{y\}) \le L_f(P).$

Proof: Let $P = \{x_0, x_1, ..., x_n\}$, m_i be the minimum value of f on $[x_{i-1}, x_i]$, M_i be the maximum value of f on $[x_{i-1}, x_i]$, and $\Delta x_i = x_i - x_{i-1}$. Then

$$L_f(P) = m_1 \Delta x_1 + \dots + m_n \Delta x_n \qquad \text{and} \qquad U_f(P) = M_1 \Delta x_1 + \dots + M_n \Delta x_n$$

Now, since $y \in [a, b]$ but $y \notin P$, $x_{i-1} < y < x_i$ for some $1 \le i \le n$. Then, let A be the maximum value of f on $[x_{i-1}, y]$, let B be the maximum value of f on $[y, x_i]$, let a be the minimum value of f on $[x_{i-1}, y]$ and let b be the minimum value of f on $[y, x_i]$. Clearly, $A \le M_i$, $B \le M_i$ being the maximums over smaller domains and $a \ge m_i$ and $b \ge m_i$, being the minimums over smaller domains. Now, the two lower sums $L_f(P)$ and $L_f(P \cup \{y\})$ only differ on the interval which contains y so

$$L_f(P \cup \{y\}) - L_f(P) = a(y - x_{i-1}) + b(x_i - y) - m_i \Delta x_i \ge m_i(y - x_{i-1}) + m_i(x_i - y) - m_i \Delta x_i = m_i(x_i - x_{i-1} - \Delta x_i) = 0$$

 \mathbf{SO}

$$L_f(P \cup \{y\}) \ge L_f(P)$$

and the two upper sums $U_f(P)$ and $U_f(P \cup \{y\})$ also only differ on the interval which contains y so

$$U_f(P \cup \{y\}) - U_f(P) = A(y - x_{i-1}) + B(x_i - y) - M_i \Delta x_i \le M_i(y - x_{i-1}) + M_i(x_i - y) - m_i \Delta x_i = M_i(x_i - x_{i-1} - \Delta x_i) = 0$$
so

$$U_f(P \cup \{y\}) \le U_f(P).$$