The following is a proof of Theorem 7.1.8 or Theorem B.3.2. It is essentially the same as the one in the book, with some minor variable name changes: I used y in place of t, c in place of a and e in place of b. The first one is because $y=f(x)$ is standard, the last two are because I have my interval as (a, b) using up those letters. The main change is that I have more steps which are numbered so you can write the reasons referring back to previous steps, if necessary.

Theorem 7.1.8 Let f be a on-to-one function differentiable on (a, b). Let $c \in(a, b), f(c)=e$ and $f^{\prime}(c) \neq 0$. Then, f^{-1} is differentiable at e and

$$
\left(f^{-1}\right)^{\prime}(e)=\frac{1}{f^{\prime}(c)}
$$

Proof: Let f be a on-to-one function differentiable on (a, b). Let $c \in(a, b), f(c)=e$ and $f^{\prime}(c) \neq 0$. To prove

$$
\left(f^{-1}\right)^{\prime}(e)=\frac{1}{f^{\prime}(c)}
$$

we'll show that

$$
\lim _{y \rightarrow e} \frac{f^{-1}(y)-f^{-1}(e)}{y-e}=\frac{1}{f^{\prime}(c)}
$$

Let $\epsilon>0$ be given. First, the function $g(z)=\frac{1}{z}$ is continous at every $z \neq 0$, in particular at $z=f^{\prime}(c)$, so there exists a $\delta_{1}>0$ such that

$$
\begin{equation*}
0<\left|z-f^{\prime}(c)\right|<\delta_{1} \quad \quad \text { implies } \quad\left|\frac{1}{z}-\frac{1}{f^{\prime}(c)}\right|<\epsilon \tag{1}
\end{equation*}
$$

Since f is differentiable at c,

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)
$$

so using the definition of the limit with $\epsilon=\delta_{1}$, there is a $\delta_{2}>0$ such that

$$
\begin{equation*}
0<|x-c|<\delta_{2} \quad \text { implies } \quad\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<\delta_{1} \tag{2}
\end{equation*}
$$

Now, let $x=f^{-1}(y)$ and $c=f^{-1}(e)$. Since f^{-1} is continuous at e, using $\epsilon=\delta_{2}$ in the definiton of continuity, there exists a $\delta_{3}>0$ such that

$$
\begin{equation*}
0<|y-e|<\delta_{3} \quad \text { implies } \quad\left|f^{-1}(y)-f^{-1}(e)\right|<\delta_{2} \tag{3}
\end{equation*}
$$

Now, let $\delta=\delta_{3}$.
For the rest of the steps, give a reason, completing computations if necessary:

1. Assume $|y-e|<\delta$.
2. Then, $|x-c|<\delta_{2}$
3. So

$$
\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<\delta_{1}
$$

4. Then,

$$
\left|\frac{1}{\frac{f(x)-f(c)}{x-c}}-\frac{1}{f^{\prime}(c)}\right|<\epsilon
$$

5. So,

$$
\left|\frac{f^{-1}(y)-f^{-1}(e)}{y-e}-\frac{1}{f^{\prime}(c)}\right|<\epsilon
$$

6. Therefore,

$$
0<|y-e|<\delta \quad \text { implies } \quad\left|\frac{f^{-1}(y)-f^{-1}(e)}{y-e}-\frac{1}{f^{\prime}(c)}\right|<\epsilon
$$

7. So

$$
\lim _{y \rightarrow e} \frac{f^{-1}(y)-f^{-1}(e)}{y-e}=\frac{1}{f^{\prime}(c)}
$$

and
8.

$$
\left(f^{-1}\right)^{\prime}(e)=\frac{1}{f^{\prime}(c)}
$$

