Table of Laplace Transforms

The Laplace Transform of $f(t)$ is defined to be $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$ where it converges. We do not want to evaluate this improper integral each time, so we use the table below. The restrictions on s in the Laplace transforms are omitted. The Theorem numbers refer to lecture notes.

	Function $f(t)$	Laplace transform $F(s)$	How to compute
1	1	$\frac{1}{s}$	Use the definition of the Laplace transform.
2	$e^{a t}$	$\frac{1}{s-a}$	Use \#1 and Theorem 1.
3	$t^{n}, n=0,1,2, \ldots$	$\frac{n!}{s^{n+1}} n!$	Use \#1 and Theorem 5.
4	$t^{n} e^{a t}$	$\overline{(s-a)^{n+1}}$	Use Theorem 5 and \#2 or Theorem 1 and \#3.
5	$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$	Use the definition.
6	$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$	Use \#5 and Theorem 4 with $n=1$.
7	$t \cos (a t)$	$\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$	Use Theorem 5 and \#5 above.
8	$t \sin (a t)$	$\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$	Use Theorem 5 and \#6 above.
9	$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	Use Theorem 1 and \#5 above.
10	$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	Use Theorem 1 and \#6 above.

Theorem 1 is about shifts of the Laplace transform:

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a), \text { where } F(s)=\mathcal{L}\{f(t)\}
$$

Theorem 3 is about the Laplace transform of the $n^{\text {th }}$ derivative:

$$
\mathcal{L}\left\{y^{(n)}\right\}=s^{n} \mathcal{L}\{y\}-y^{(n-1)}(0)-s y^{(n-2)}(0)-s^{2} y^{(n-3)}(0)-\ldots-s^{n-2} y^{\prime}(0)-s^{n-1} y(0)
$$

Theorem 4 is about Laplace transforms of shifts:

$$
\mathcal{L}\{g(t-c) \alpha(t-c)\}=e^{-c s} \mathcal{L}\{g\} .
$$

Theorem 5 is about the derivatives of the Laplace transform $F(s)$:

$$
\frac{d^{n}}{d s^{n}} F(s)=\mathcal{L}\left\{(-t)^{n} f(t)\right\}, \text { where } F(s)=\mathcal{L}\{f(t)\}
$$

Theorem 6 is about the product of Laplace transforms:

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=\int_{0}^{t} g(\beta) f(t-\beta) d \beta
$$

where $\mathcal{L}\{f(t)\}=F(s)$ and $\mathcal{L}\{g(t)\}=G(s)$. Finally, we have the Laplace transform of a periodic function $f(t)$ with period P :

$$
\mathcal{L}\{f(t)\}=\frac{\int_{0}^{P} e^{-s t} f(t) d t}{1-e^{-P s}}
$$

