Math 135, Winter 2015, Midterm 1 Review Questions

1. Let S be the set of numbers of the form $(-1)^{n^{2}} \frac{n+\frac{1}{n!}}{n+1}$ for $n \geq 2$. Explain why S does or does not have a least upper bound. If it has a least upper bound, what is it? Answer the same question about greatest lower bounds.
2. Let $\left\{a_{n}\right\}$ be the sequence defined inductively by $a_{1}=1, a_{n+1}=\frac{1}{a_{n}^{4}+16}$.
(a) Show that $\left\{a_{n}\right\}$ is a Cauchy sequence.
(b) Show that $\left\{a_{n}\right\}$ converges to a solution of the equation $x^{5}+16 x-1=0$.
(c) Show that if $\left\{b_{n}\right\}$ is the sequence defined by $b_{1}=2, b_{n+1}=\frac{1}{b_{n}^{4}+16}$, then $\left\{b_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}$.
3. Show that the equation

$$
x=1+\int_{0}^{x} \frac{\cos (t)}{t^{2}+4} d t
$$

has one and only one solution.
4. (a) Consider the sequence $\left\{a_{k}\right\}$ defined by $a_{0}=1, a_{n+1}=\pi+\frac{1}{2} \sin \left(a_{n}\right)$. Does the series converge? Why or why not?
(b) Consider the series $\left\{b_{k}\right\}$ defined by $b_{0}=0, b_{n+1}=\pi+\frac{1}{2} \sin \left(b_{n}\right)$. Find $\lim _{n \rightarrow \infty} b_{n}$. (Hint: Compute b_{1} and b_{2}.)
(c) What is the relation between $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$?
5. For each integer $n \geq 1$, let $a_{n}=2 \ln (3 n-1)-\ln \left(2 n^{2}+2 n+3\right)$. Does the sequence $\left\{a_{n}\right\}$ converge or diverge? If it converges, what is the limit?
6. Consider the sequence $\left\{a_{k}\right\}$ defined as follows:

$$
a_{0}=1 \quad a_{n+1}=1-a_{n} / 2 \text { for } n=0,1,2, \ldots
$$

Show that the sequence converges to $2 / 3$.
7. Problem 47 in Section 12.3.
8. For which real numbers α and β does the series $\sum_{k=2}^{\infty} \frac{1}{k^{\alpha}(\ln k)^{\beta}}$ converge?
9. Test the following series for convergence, and (where appropriate) test for absolute and conditional convergence.
(a) $\sum_{k=1}^{\infty} \frac{k!}{k^{k}}$
(b) $\sum_{n=1}^{\infty} \frac{k^{k}}{k!}$
(c) $\sum_{n=1}^{\infty}(-1)^{k} \frac{k+2}{k^{2}+k}$
(d) $\sum_{k=1}^{\infty}(-1)^{k} \frac{k+2}{k^{3}+k}$
(e) $\sum_{k=0}^{\infty} \frac{k \sin (k \pi)}{k^{2}+1}$
(f) $\sum_{k=1}^{\infty}(-1)^{k} \frac{\ln k}{k^{3}+\ln k+1}$
(g) $1+\frac{1 \cdot 2}{1 \cdot 3}+\frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7}+\ldots$
10. Give the Taylor series about 0 of the function $f(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$. For what values of x does the series converge to $f(x)$? Justify your answer.
11. Find the first three non-zero terms in the series expansion of $\arcsin (x)$ about $x=0$.
12. Let $f(x)=e^{-1 / x^{2}}$, if $x \neq 0$ and let $f(0)=0$.
(a) Prove that $\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{n}}=0$ for any integer $n \geq 0$.
(b) Prove that for $x \neq 0$ and $k \geq 1$, the k th derivative $f^{(k)}(x)=\frac{e^{-1 / x^{2}}}{x^{3 k}} P_{k}(x)$, where $P_{k}(x)$ is a polynomial of degree at most $2 k-2$.
(c) Show that $f^{(k)}(0)=0$ for all $k \geq 1$. What does it say about the Taylor Series for $f(x)$ near 0 ? Where does it converge? What does it converge to?
13. What is an upper bound for the error in estimating $\sin (x)$ with its Taylor polynomial of degree 5 near $x=0$ if x is in the interval $[-\pi, \pi]$
14. Estimate $\sqrt{10}$ to 4 decimal places using a Taylor polynomial.
15. Find an interval J centered at 0 so that the error upper bound in approximating $\ln (1+x)$ with its third degree Taylor polynomial near $x=0$ is at most 0.0001 for any x in J.
16. Consider the function f defined on the open interval $(-1,1)$ by the formula

$$
f(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k^{2}+1}, \quad|x|<1 .
$$

Notice that $f(x)=\sum_{k=0}^{n} \frac{x^{k}}{k^{2}+1}+R_{n}(x)$, where $R_{n}(x)=\sum_{k=n+1}^{\infty} \frac{x^{k}}{k^{2}+1}$.
Show that $R_{n}(x)$ satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{1}{(n+1)^{2}+1} \cdot \frac{|x|^{n+1}}{1-|x|} .
$$

17. For each of the following power series: (i) find the radius of convergence, (ii) find the interval of convergence, (iii) determine the values of x for which the series is absolutely convergent and the values of x for which the series is conditionally convergent.
(a) $\sum_{k=1}^{\infty} \frac{2^{k} \ln (k+1)}{k} x^{k}$.
(b) $\sum_{k=1}^{\infty} \ln (k+1) \frac{x^{k}}{e^{k}}$.
(c) $\sum_{k=0}^{\infty} \frac{2^{k} x^{k}}{k+1}$.
(d) $\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k}(k+1)^{2}}$
(e) $\sum_{k=1}^{\infty} \frac{2^{k} \ln (k+1)}{k} x^{k}$
18. Show that for any real number c,

$$
\lim _{x \rightarrow \infty}\left(\frac{x+c}{x-c}\right)^{x}=e^{2 c} .
$$

19. Evaluate the following limits in any way you wish.
(a) $\lim _{x \rightarrow 0} \frac{x \sin \left(x^{2}\right)-\sin \left(x^{3}\right)}{\sin \left(x^{7}\right)}$
(b) $\lim _{x \rightarrow 0} \frac{\cosh x-\cos x}{\sin x^{2}}$
(c) $\lim _{x \rightarrow 0} \frac{\cosh x-\cos x}{x^{2}}$
(d) $\lim _{x \rightarrow 0} \frac{\cos x-\cos 2 x}{x \sin 4 x}$.
(e) $\lim _{x \rightarrow 0} \frac{x^{2} \cos \left(x^{2}\right)-\sin \left(x^{2}\right)}{\sin \left(x^{6}\right)}$
(f) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{8}\right)-x^{6} \cos \left(x^{2}\right)}{\sin \left(x^{4}\right)-x^{4}}$
20. Evaluate the integrals or explain why you can't.
(a) $\int_{0}^{\infty} \frac{\cos (x)}{(2+\sin (x))^{2}} d x$
(b) $\int_{-1}^{1} \frac{x}{1-x^{2}} d x$
(c) $\int_{-\infty}^{+\infty} \frac{x}{\left(1+x^{6}\right)^{2}} d x$
(d) $\int_{0}^{1} \frac{d x}{x^{2 / 5}}$
(e) $\int_{-\infty}^{\infty} \frac{x}{1+x^{2}} d x$
