Math 135, Winter 2015, Midterm 2 Review

Topics

- Picard iteration
- linear degree n equations, linear independence, form of the general solution in both the homogeneous and non-homogeneous cases
- solving linear constant coefficient homogeneous equations using the characteristic equation
- finding a second solution to a linear homogeneous equation using reduction of order
- solving linear constant coefficient nonhomogeneous equations using the method of undetermined coefficients (and, secondarily, using variation of parameters)
- Laplace transforms and inverse Laplace transforms: basic formulas, using tables, discontinuous forcing functions
- solving linear constant coefficient equations using Laplace transforms
- power series solutions

Formulas you will have on the exam

Besides the Laplace Table sheet you used on the quiz, you will have the following on your exam:
Picard iteration for $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$

$$
y_{n}=y_{0}+\int_{t_{0}}^{t} f\left(u, y_{n-1}\right) d u
$$

Reduction of order: If y_{1} is a solution of the homogeneous second order linear differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then the second solution is given by $y_{2}(t)=y_{1}(t) v(t)$ where $u(t)=v^{\prime}(t)$ and

$$
u(t)=e^{-\int \frac{2 y_{1}^{\prime}+p y_{1}}{y_{1}} d t}
$$

Variation of Parameters: If y_{1} and y_{2} are two independent solutions of the second order homogeneous linear differential equation with constant coefficients $y^{\prime \prime}+b y^{\prime}+c y=0$, then the particular solution of $y^{\prime \prime}+b y^{\prime}+c y=f(t)$ is given by $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ where

$$
u_{1}^{\prime}=-\frac{y_{2}(t) f(t)}{W\left(y_{1}, y_{2}\right)} \quad \text { and } \quad u_{2}^{\prime}=\frac{y_{1}(t) f(t)}{W\left(y_{1}, y_{2}\right)}
$$

and $W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is the Wronskian.

Practice problems

1. Is there a differential equation of the form $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, with p and q continuous on the open interval $-1<t<1$, for which the functions $y=t^{4}$ and $y=t^{6}$ are both solutions? Explain your answer.
2. The solution of the initial value problem

$$
y^{\prime \prime}+(t+1) y^{\prime}+y=0, \quad y(0)=1 \quad y^{\prime}(0)=0
$$

can be expressed in the form $y=\sum_{k=0}^{\infty} a_{k} t^{k}$. Find the recursion formula for the coefficients.
3. Solve the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

where $f(t)=\left\{\begin{array}{rr}4, & 0 \leq t<3, \\ 7, & 3 \leq t .\end{array}\right.$
4. Let c be a constant, and let $y(t)$ be the solution to the initial value problem

$$
y^{\prime \prime}-4 y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

where $f(t)=\left\{\begin{array}{lr}0, & 0 \leq t<1, \\ 1, & 1 \leq<3 . \\ c+1, & 3 \leq t .\end{array}\right.$
For what value(s) of c does $y(t)$ satisfy $\lim _{t \rightarrow \infty} y(t)=0$?
5. The solution to the initial value problem

$$
\left(1+t^{2}\right) y^{\prime \prime}+y^{\prime}-2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

can be expressed in the form $y=\sum_{n=0}^{\infty} a_{n} t^{n}$. Find the recursion formula for the coefficients. Also find a_{0}, a_{1}, a_{2} and a_{3}.
6. Find the general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=2 \cos t .
$$

7. Let $f(t)$ be a continuous function, and suppose that $y_{1}(t)$ and $y_{2}(t)$ are solutions to the equation

$$
y^{\prime \prime}+4 y=f(t)
$$

satisfying the initial conditions

$$
y_{1}(0)=2, \quad y_{1}^{\prime}(0)=2, \quad y_{2}(0)=2, y_{2}^{\prime}(0)=0 .
$$

Find $y_{1}(t)-y_{2}(t)$.
8. The function $y_{1}=t$ is one solution to the differential equation

$$
y^{\prime \prime}+\frac{2}{t} y^{\prime}-\frac{2}{t^{2}} y=0 .
$$

Solve the initial value problem

$$
y^{\prime \prime}+\frac{2}{t} y^{\prime}-\frac{2}{t^{2}} y=0, \quad y(1)=0, y^{\prime}(1)=6 .
$$

9. Find the general solution of the differential equation

$$
y^{\prime \prime}+y=2 t^{2}+t .
$$

10. Find a particular solution of the differential equation $y^{\prime \prime}-y=\left(1+t^{2}\right)^{-1}$. Express your answer in terms of integrals, and do not attempt to evaluate these integrals.
11. Is there a differential equation of the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0,
$$

with p and q continuous on the open interval $-1<t<1$, for which the functions $y=t^{4}$ and $y=t^{6}$ are both solutions? Explain your answer.
12. What is the general solution of the diffential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{t} ?
$$

13. Solve the initial value problem $y^{\prime \prime}+\omega_{0}^{2} y=e^{t}-e^{-t}, y(0)=0, y^{\prime}(0)=0$ using the method of undetermined coefficients. (Here ω_{0} is a positive constant.)
14. Consider the following differential equation:

$$
y^{\prime \prime}-2 t y^{\prime}+2 \lambda y=0
$$

where λ is a constant. (This is called Hermite's diffential equation and it arises in the solution of the "Quantum Harmonic Oscillator")
(a) Find the recursion formula for the coefficients of the power series solution $y(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$.
(b) Suppose that the initial conditions are $y(0)=1, y^{\prime}(0)=0$ and that $\lambda=2 n$ for n a positive integer. Using the recursion formula you found in part (a), show that the solution is a polynomial. (The solution is called a "Hermite Polynomial".
15. Solve the initial value problem

$$
t^{2} y^{\prime \prime}+t y^{\prime}-y=0, \quad t>0, \quad y(1)=1, \quad y^{\prime}(1)=0
$$

Hint: What happens to the left hand side of the differential euation if $y(t)=t^{r}$.
16. Suppose that $Y(s)=\frac{4}{(s-1)(s+1)\left(s^{2}+1\right)}$ is the Laplace transform of the solution of the initial value problem

$$
y^{\prime \prime}-y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

(a) What is $f(t)$? (b) What is the solution?

Application Problems

1.
