
Summary of the 2nd Order Constant coefficient ODE examples

This is a summary of pages 313-368 in TP. After each case, example numbers are given to use with the
Driven Damped Oscillator from the Wolfram Demonstrations Project available at
http://demonstrations.wolfram.com/DrivenDampedOscillator/.
First, you have to download the Wolfram CDF player. There is a link on the same page. The solutions have
the initial condition x′(0) = 0. Vary the numbers in the examples to see what happens.

I. Unforced (homogeneous) case mx′′ + cx′ + kx = 0

A. Undamped c = 0

This is simple harmonic motion with the solution x(t) = C1 cos(ω0t) + C2 sin(ω0t) where ω0 =
√
k/m is the

natural frequency. The equation can also be written in the form

x(t) = A cos(ω0t− θ)

where A =
√
C2

1 + C2
2 is the amplitude of the motion and tan θ = C2/C1.

Example: Try mass m = 4, spring constant k = 1, damping friction c = 0 , initial position x(0) = 1 in
the Driven Damped Oscillator. The forcing amplitude must be 0 to make f(t) = 0.

B. Damped c > 0

1. It is overdamped if c2 − 4mk > 0. There are two negative real roots.The solution is

x(t) = C1e
r1t + C2e

r2t

and x(t)→ 0 as t→∞.

2. It is critically damped if c2 − 4mk = 0. There is one real negative root.The solution is

x(t) = C1e
rt + C2te

rt

and x(t)→ 0 as t→∞.

3. It is underdamped if c2−4mk = 0. There are two complex roots α±ω0i with α < 0 and β < ω0.The
solution isx(t) = eαt (C1 cosβt+ C2 sinβt) or

x(t) = eαtA cos(βt− θ)

The solution x(t)→ 0 as t→∞ and keeps oscillating.

Examples: Try mass m = 1, spring constant k = 1, and vary the damping friction c = 4.2, c = 4 and
c = 0.2 in the Driven Damped Oscillator. The forcing amplitude must be 0 to make f(t) = 0.

II. Forced (nonhomogeneous) case mx′′ + cx′ + kx = A0 cos(ωt)

A. Undamped c = 0

1. ω 6= ω0. The solution is of the form

x(t) = A cos(ω0t− θ) +
A0/m

ω2
0 − ω2

cos(ωt)

If x(0) = x′(0) = 0 we can reorganize x to look like

x(t) =
A0/m

ω2
0 − ω2

sin

(
ω0 − ω

2
t

)
sin

(
ω0 + ω

2
t

)
and with ω0 − ω small compared to ω0 + ω, we get one sine oscillation inside another.

Example: Try k = 4, c = 1, m = 0.25, and the forcing frequency ω = 7. I get a nice picture (x(t) is
the black curve) when the time interval is up to 88.
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2. ω = ω0. This is the resonance case. The solution is

x(t) = A cos(ω0t− θ) +
A0

2mω0
t sin(ω0t).

The amplitude will increase with time.

Example: I can’t get an example to work in this case. There might be a bug in the code.

B. Damped c > 0

First, note that when c > 0, the homogeneous solution yh(t)→ 0. So, eventually, y(t) ≈ yp(t). The particular
solution is

yp(t) =
A0

m∆
cos(ωt− θ)

where ∆ =

√
(ω2

0 − ω2)
2

+ (ωc/m)2. The amplitude A0/m∆ is maximized when ω =

√
ω2
0 −

c2

2m2
. This is

called the resonant frequency. The corresponding maximum amplitude is
A0

c
√
ω2
0 − (c/2m)2

.

Example: You can set k = 9, c = 2, m = 1 and the forcing frequency ω =
√

7 ≈ 2.646. Observe that
the amplitude of the motion is large compared with the amplitude of the forcing function.
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