Summary of the 2nd Order Constant coefficient ODE examples

This is a summary of pages $313-368$ in TP. After each case, example numbers are given to use with the Driven Damped Oscillator from the Wolfram Demonstrations Project available at http://demonstrations.wolfram.com/DrivenDampedOscillator/.
First, you have to download the Wolfram CDF player. There is a link on the same page. The solutions have the initial condition $x^{\prime}(0)=0$. Vary the numbers in the examples to see what happens.

I. Unforced (homogeneous) case $m x^{\prime \prime}+c x^{\prime}+k x=0$

A. Undamped $c=0$

This is simple harmonic motion with the solution $x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency. The equation can also be written in the form

$$
x(t)=A \cos \left(\omega_{0} t-\theta\right)
$$

where $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$ is the amplitude of the motion and $\tan \theta=C_{2} / C_{1}$.
Example: Try mass $m=4$, spring constant $k=1$, damping friction $c=0$, initial position $x(0)=1$ in the Driven Damped Oscillator. The forcing amplitude must be 0 to make $f(t)=0$.

B. Damped $c>0$

1. It is overdamped if $c^{2}-4 m k>0$. There are two negative real roots. The solution is

$$
x(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

and $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
2. It is critically damped if $c^{2}-4 m k=0$. There is one real negative root.The solution is

$$
x(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

and $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
3. It is underdamped if $c^{2}-4 m k=0$. There are two complex roots $\alpha \pm \omega_{0} i$ with $\alpha<0$ and $\beta<\omega_{0}$. The solution is $x(t)=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)$ or

$$
x(t)=e^{\alpha t} A \cos (\beta t-\theta)
$$

The solution $x(t) \rightarrow 0$ as $t \rightarrow \infty$ and keeps oscillating.
Examples: Try mass $m=1$, spring constant $k=1$, and vary the damping friction $c=4.2, c=4$ and $c=0.2$ in the Driven Damped Oscillator. The forcing amplitude must be 0 to make $f(t)=0$.
II. Forced (nonhomogeneous) case $m x^{\prime \prime}+c x^{\prime}+k x=A_{0} \cos (\omega t)$

A. Undamped $c=0$

1. $\omega \neq \omega_{0}$. The solution is of the form

$$
x(t)=A \cos \left(\omega_{0} t-\theta\right)+\frac{A_{0} / m}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)
$$

If $x(0)=x^{\prime}(0)=0$ we can reorganize x to look like

$$
x(t)=\frac{A_{0} / m}{\omega_{0}^{2}-\omega^{2}} \sin \left(\frac{\omega_{0}-\omega}{2} t\right) \sin \left(\frac{\omega_{0}+\omega}{2} t\right)
$$

and with $\omega_{0}-\omega$ small compared to $\omega_{0}+\omega$, we get one sine oscillation inside another.
Example: Try $k=4, c=1, m=0.25$, and the forcing frequency $\omega=7$. I get a nice picture $(x(t)$ is the black curve) when the time interval is up to 88 .
2. $\omega=\omega_{0}$. This is the resonance case. The solution is

$$
x(t)=A \cos \left(\omega_{0} t-\theta\right)+\frac{A_{0}}{2 m \omega_{0}} t \sin \left(\omega_{0} t\right) .
$$

The amplitude will increase with time.
Example: I can't get an example to work in this case. There might be a bug in the code.
B. Damped $c>0$

First, note that when $c>0$, the homogeneous solution $y_{h}(t) \rightarrow 0$. So, eventually, $y(t) \approx y_{p}(t)$. The particular solution is

$$
y_{p}(t)=\frac{A_{0}}{m \Delta} \cos (\omega t-\theta)
$$

where $\Delta=\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\omega c / m)^{2}}$. The amplitude $A_{0} / m \Delta$ is maximized when $\omega=\sqrt{\omega_{0}^{2}-\frac{c^{2}}{2 m^{2}}}$. This is called the resonant frequency. The corresponding maximum amplitude is $\frac{A_{0}}{c \sqrt{\omega_{0}^{2}-(c / 2 m)^{2}}}$.

Example: You can set $k=9, c=2, m=1$ and the forcing frequency $\omega=\sqrt{7} \approx 2.646$. Observe that the amplitude of the motion is large compared with the amplitude of the forcing function.

