Summary of the 2nd Order Constant coefficient ODE examples

This is a summary of pages 313-368 in TP. After each case, example numbers are given to use with the Driven Damped Oscillator from the Wolfram Demonstrations Project available at

http://demonstrations.wolfram.com/DrivenDampedOscillator/.

First, you have to download the Wolfram CDF player. There is a link on the same page. The solutions have the initial condition x'(0) = 0. Vary the numbers in the examples to see what happens.

I. Unforced (homogeneous) case mx'' + cx' + kx = 0

A. Undamped c = 0

This is simple harmonic motion with the solution $x(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ where $\omega_0 = \sqrt{k/m}$ is the natural frequency. The equation can also be written in the form

$$x(t) = A\cos(\omega_0 t - \theta)$$

where $A = \sqrt{C_1^2 + C_2^2}$ is the amplitude of the motion and $\tan \theta = C_2/C_1$.

Example: Try mass m = 4, spring constant k = 1, damping friction c = 0, initial position x(0) = 1 in the Driven Damped Oscillator. The forcing amplitude must be 0 to make f(t) = 0.

B. Damped c > 0

1. It is **overdamped** if $c^2 - 4mk > 0$. There are two negative real roots. The solution is

$$x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

and $x(t) \to 0$ as $t \to \infty$.

2. It is critically damped if $c^2 - 4mk = 0$. There is one real negative root. The solution is

$$x(t) = C_1 e^{rt} + C_2 t e^{rt}$$

and $x(t) \to 0$ as $t \to \infty$.

3. It is **underdamped** if $c^2 - 4mk = 0$. There are two complex roots $\alpha \pm \omega_0 i$ with $\alpha < 0$ and $\beta < \omega_0$. The solution is $x(t) = e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t)$ or

$$x(t) = e^{\alpha t} A \cos(\beta t - \theta)$$

The solution $x(t) \to 0$ as $t \to \infty$ and keeps oscillating.

Examples: Try mass m = 1, spring constant k = 1, and vary the damping friction c = 4.2, c = 4 and c = 0.2 in the Driven Damped Oscillator. The forcing amplitude must be 0 to make f(t) = 0.

II. Forced (nonhomogeneous) case $mx'' + cx' + kx = A_0 \cos(\omega t)$

A. Undamped c = 0

1. $\omega \neq \omega_0$. The solution is of the form

$$x(t) = A\cos(\omega_0 t - \theta) + \frac{A_0/m}{\omega_0^2 - \omega^2}\cos(\omega t)$$

If x(0) = x'(0) = 0 we can reorganize x to look like

$$x(t) = \frac{A_0/m}{\omega_0^2 - \omega^2} \sin\left(\frac{\omega_0 - \omega}{2}t\right) \sin\left(\frac{\omega_0 + \omega}{2}t\right)$$

and with $\omega_0 - \omega$ small compared to $\omega_0 + \omega$, we get one sine oscillation inside another.

Example: Try k = 4, c = 1, m = 0.25, and the forcing frequency $\omega = 7$. I get a nice picture (x(t) is the black curve) when the time interval is up to 88.

2. $\omega = \omega_0$. This is the **resonance** case. The solution is

$$x(t) = A\cos(\omega_0 t - \theta) + \frac{A_0}{2m\omega_0}t\sin(\omega_0 t).$$

The amplitude will increase with time.

Example: I can't get an example to work in this case. There might be a bug in the code.

B. Damped c > 0

First, note that when c > 0, the homogeneous solution $y_h(t) \to 0$. So, eventually, $y(t) \approx y_p(t)$. The particular solution is

$$y_p(t) = \frac{A_0}{m\Delta}\cos(\omega t - \theta)$$

where $\Delta = \sqrt{(\omega_0^2 - \omega^2)^2 + (\omega c/m)^2}$. The amplitude $A_0/m\Delta$ is maximized when $\omega = \sqrt{\omega_0^2 - \frac{c^2}{2m^2}}$. This is called the **resonant frequency**. The corresponding maximum amplitude is $\frac{A_0}{c\sqrt{\omega_0^2 - (c/2m)^2}}$.

Example: You can set k = 9, c = 2, m = 1 and the forcing frequency $\omega = \sqrt{7} \approx 2.646$. Observe that the amplitude of the motion is large compared with the amplitude of the forcing function.