Summary of the 2nd Order Constant coefficient ODE examples

This is a summary of pages 313-368 in TP. After each case, example numbers are given to use with the
Driven Damped Oscillator from the Wolfram Demonstrations Project available at
http://demonstrations.wolfram.com/DrivenDamped Oscillator/.

First, you have to download the Wolfram CDF player. There is a link on the same page. The solutions have
the initial condition z’(0) = 0. Vary the numbers in the examples to see what happens.

I. Unforced (homogeneous) case mz” + cx’ + kx =0

A. Undamped c=0

This is simple harmonic motion with the solution x(t) = C; cos(wot) + Ca sin(wot) where wy = \/k/m is the
natural frequency. The equation can also be written in the form

x(t) = Acos(wot — 0)
where A = \/C? + C3 is the amplitude of the motion and tanf = Cy/C.
Example: Try mass m = 4, spring constant k¥ = 1, damping friction ¢ = 0 , initial position z(0) =1 in
the Driven Damped Oscillator. The forcing amplitude must be 0 to make f(¢) = 0.
B. Damped ¢ > 0
1. It is overdamped if ¢> — 4mk > 0. There are two negative real roots.The solution is
x(t) = Che™t 4 Coemt
and z(t) = 0 as t — oo.
2. It is critically damped if ¢ — 4mk = 0. There is one real negative root.The solution is
x(t) = Cre™ + Cote™
and z(t) = 0 as t — oo.

3. It is underdamped if ¢> —4mk = 0. There are two complex roots o & wgi with & < 0 and 8 < wp.The
solution isz(t) = e** (Cy cos Bt + Cy sin Bt) or
z(t) = e* Acos(Bt — 0)
The solution z(t) — 0 as t — oo and keeps oscillating.

Examples: Try mass m = 1, spring constant k = 1, and vary the damping friction ¢ = 4.2, ¢ = 4 and
¢ = 0.2 in the Driven Damped Oscillator. The forcing amplitude must be 0 to make f(¢) = 0.

II. Forced (nonhomogeneous) case mz” + cx’ + kx = Ag cos(wt)
A. Undamped ¢ =0

1. w # wg. The solution is of the form

Ao/m

z(t) = Acos(wot — 0) + 2 cos(wt)
0
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If 2(0) = 2’(0) = 0 we can reorganize x to look like

z(t) = élo/m sin <w02—wt> sin <w0;—wt>
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and with wy — w small compared to wg + w, we get one sine oscillation inside another.

Example: Try k =4, ¢ = 1, m = 0.25, and the forcing frequency w = 7. I get a nice picture (z(t) is
the black curve) when the time interval is up to 88.



2. w = wqp. This is the resonance case. The solution is

Ap

x(t) = Acos(wot — 0) + 5 t sin(wot).

mwo

The amplitude will increase with time.

Example: I can’t get an example to work in this case. There might be a bug in the code.

B. Damped ¢ >0

First, note that when ¢ > 0, the homogeneous solution yy,(t) — 0. So, eventually, y(¢) =~ y,(¢). The particular
solution is

yp(t) = % cos(wt — 6)
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where A = \/(wg — w?)® 4 (we/m)2. The amplitude Ag/mA is maximized when w = {/w? — % This is
m

Ao

c/w2 — (c/2m)?’
Example: You can set k =9, ¢ = 2, m = 1 and the forcing frequency w = /7 ~ 2.646. Observe that
the amplitude of the motion is large compared with the amplitude of the forcing function.

called the resonant frequency. The corresponding maximum amplitude is



