
Math 135A, Winter 2014 Cauchy Sequences of Functions

Consider the closed interval I. Let C denote the set of all continuous functions on the interval I. For Y ∈ C,
set

‖Y ‖ = max
t∈I
|Y (t)|

For Y1, Y2 ∈ C, we call ‖Y1 − Y2‖ the distance between Y1 and Y2. Notice that

(1) |Y1(t)− Y2(t)| ≤ ‖Y2 − Y1‖

(2) ‖Y1 − Y2‖ = 0 implies Y1 = Y2.

(3) The triangle inequality holds:
‖Y1 + Y2‖ ≤ ‖Y1‖+ ‖Y2‖ .

A sequence {Yn} of functions in C is said to converge uniformly to a function Y if for every ε > 0, there is
an integer N such that ‖Yn − Y ‖ < ε for all n ≥ N .

A sequence {Yn} of continuous functions in C is said to be a Cauchy sequence (of continuous functions) if
for every ε > 0, there is an integer N such that ‖Yn − Ym‖ < ε for all n,m ≥ N .

Exercise. Convince yourself that if {Yn} is a Cauchy sequence in C, then for all t ∈ I, the sequence {Yn(t)}
is a Cauchy sequence of numbers, and therefore a convergent sequence.

Suppose that {Yn} is a Cauchy sequence of functions in C. Define the limit of the sequence to be the function
Y : I → R defined by

Y (t) = lim
n→∞

Yn(t) . (*)

(By the exercise above, this limit exists.) We will also write Y = limn→∞ Yn.

Theorem 1. Let {Yn} a Cauchy sequence of functions, and let Y be the function defined in Equation (*).
Then Y is continuous and the sequence {Yn} converges uniformly to Y .

Proof. Choose any ε > 0. Because {Yn} is Cauchy, there exists an integer N such that ‖Yn − Ym‖ < ε/3
for all n,m ≥ N . It follows that

|Yn(t)− YN (t)| ≤ ‖Yn − YM‖ < ε/3

for all n ≥ N and all t ∈ I. Consequently

|Y (t)− YN (t)| = | lim
n→∞

Yn(t)− YN (t)| = lim
n→∞

|Yn(t)− YN (t)| ≤ ε/3 ,

for all t ∈ I. This shows that ‖Y − YN‖ ≤ ε/3. Now suppose n > N . Then by (3)

‖Yn − Y ‖ ≤ ‖Yn − YN‖+ ‖YN − Y ‖ ≤ ε/3 + ε/3 < ε .

This shows that {Yn} converges uniformly to Y .

We now show that Y is continuous. It suffices to show that for any t ∈ I and any ε > 0, there is a δ > 0
such that |Y (t)− Y (s)| < ε for all s ∈ I with |s− t| < δ.

To see this, fix t ∈ I and choose any ε > 0. Then choose N so that ‖Yn − Y ‖ < ε/3 for all n ≥ N .

Since YN is continuous, there is a δ > 0 such |YN (s)− YN (t)| < ε/3 for all s ∈ I with |t− s| < δ.

Now suppose that |s− t| < δ and s ∈ I. Then

|Y (s)− Y (t)| = |(Y (s)− YN (s)) + (YN (s)− YN (t)) + (YN (t)− Y (t))|
≤ |Y (s)− YN (s)|+ |YN (s)− YN (t)|+ |YN (t)− Y (t)| < ε/3 + ε/3 + ε/3 = ε .

Thus, Y is continuous. �

1



Math 135A, Winter 2014 Cauchy Sequences of Functions

Next consider the subset F ⊂ C of continuous functions defined as follows: For fixed numbers t0 ∈ I, y0 and
b > 0,

F = {Y ∈ C : Y (t0) = y0, and |Y (t)− y0| ≤ b for all t ∈ I} .

Theorem 2. Let {Yn} be a Cauchy sequence of functions in F . Then the limit Y = limn→∞ Yn is also in
F .

Proof. By the previous theorem, we know that Y is continuous, so we need only check that Y (t0) = y0 and
|Y (t) − y0| ≤ b for t ∈ I. But Y (t0) = limn→∞ Yn(t0) = y0; and since |Yn(t) − y0| ≤ b for all t and all n,
clearly

|Y (t)− y0| = lim
n→∞

|Yn(t)− y0| ≤ b .

Thus Y ∈ F . �

Definition. A map T : F → F (i.e. a rule that assigns to every function in F another function in F) is
called a contraction map if there is a constant 0 < K < 1 such that

‖T (Y2)− T (Y1)‖ ≤ K‖Y2 − Y1‖

for all Y1, Y2 ∈ F .

Theorem 3. Let T : F → F be a contraction map, let Y0 be a function on F , and let {Yn} be the sequence
of functions in F defined by Yn+1 = T (Yn). Then {Yn} is a Cauchy sequence. Moreover, if Y = limn→∞ Yn,
then T (Y ) = Y , i.e. Y is a fixed point of T .

Proof. Let A = ‖Y1 − Y0‖. Since Yn = Tn(Y0) and Yn+1 = Tn(Y1), we have the inequality

‖Yn+1 − Yn| ≤ Kn‖Y1 − Y0‖ = AKn .

Now let m = n+ k > n and estimate as follows:

‖Yn+k − Yn‖ = ‖Yn+k − Yn+k−1 + Yn+k−1 − Yn+k−2 + · · ·+ (Yn+1 − Yn)‖
≤ ‖Yn+k − Yn+k−1‖+ ‖Yn+k−1 − Yn+k−2‖+ · · ·+ ‖Yn+1 − Yn‖

≤ AKn(Kk−1 +Kk−2 + · · ·+K + 1) ≤ AKn

1−K

To see that {Yn} is Cauchy, choose any ε > 0 and choose N so that AKN

1−K < ε. Then by the above
computation, for any n,m ≥ N , ‖Yn − Ym‖ < ε.

To see that T (Y ) = Y , choose any ε > 0. Set Z = T (Y ). We claim that |Z(t)− Y (t)| < 2ε for all t ∈ I. To
see this, choose N so that ‖Y − YN‖ < ε and ‖Y − YN+1‖ < ε. It follows from this that

‖Z − Yn+1‖ = ‖T (Y )− T (Yn)‖ ≤ K‖Y − Yn‖ < ε .

But then, |Z(t)− Yn+1(t)| < ε and |Y (t)− Yn+1(t)| < ε. Consequently,

|Z(t)− Y (t)| = |Z(t)− Yn+1(t) + Yn+1(t)− Y (t)| ≤ |Z(t)− Yn+1(t)|+ |Yn+1(t)− Y (t)| < ε+ ε = 2ε .

Since ε was arbitrary, it follows that Z(t) = Y (t) for all t. �
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