Consider the closed interval I. Let C denote the set of all continuous functions on the interval I. For $Y \in C$, set

$$|Y|| = \max_{t \in I} |Y(t)|$$

For $Y_1, Y_2 \in \mathcal{C}$, we call $||Y_1 - Y_2||$ the *distance* between Y_1 and Y_2 . Notice that

- (1) $|Y_1(t) Y_2(t)| \le ||Y_2 Y_1||$
- (2) $||Y_1 Y_2|| = 0$ implies $Y_1 = Y_2$.
- (3) The triangle inequality holds:

$$||Y_1 + Y_2|| \le ||Y_1|| + ||Y_2||.$$

A sequence $\{Y_n\}$ of functions in C is said to *converge uniformly* to a function Y if for every $\epsilon > 0$, there is an integer N such that $||Y_n - Y|| < \epsilon$ for all $n \ge N$.

A sequence $\{Y_n\}$ of continuous functions in C is said to be a *Cauchy sequence (of continuous functions)* if for every $\epsilon > 0$, there is an integer N such that $||Y_n - Y_m|| < \epsilon$ for all $n, m \ge N$.

Exercise. Convince yourself that if $\{Y_n\}$ is a Cauchy sequence in C, then for all $t \in I$, the sequence $\{Y_n(t)\}$ is a Cauchy sequence of numbers, and therefore a convergent sequence.

Suppose that $\{Y_n\}$ is a Cauchy sequence of functions in \mathcal{C} . Define the limit of the sequence to be the function $Y: I \to \mathbb{R}$ defined by

$$Y(t) = \lim_{n \to \infty} Y_n(t) \,. \tag{*}$$

(By the exercise above, this limit exists.) We will also write $Y = \lim_{n \to \infty} Y_n$.

Theorem 1. Let $\{Y_n\}$ a Cauchy sequence of functions, and let Y be the function defined in Equation (*). Then Y is continuous and the sequence $\{Y_n\}$ converges uniformly to Y.

Proof. Choose any $\epsilon > 0$. Because $\{Y_n\}$ is Cauchy, there exists an integer N such that $||Y_n - Y_m|| < \epsilon/3$ for all $n, m \ge N$. It follows that

$$|Y_n(t) - Y_N(t)| \le ||Y_n - Y_M|| < \epsilon/3$$

for all $n \geq N$ and all $t \in I$. Consequently

$$|Y(t) - Y_N(t)| = |\lim_{n \to \infty} Y_n(t) - Y_N(t)| = \lim_{n \to \infty} |Y_n(t) - Y_N(t)| \le \epsilon/3,$$

for all $t \in I$. This shows that $||Y - Y_N|| \le \epsilon/3$. Now suppose n > N. Then by (3)

$$||Y_n - Y|| \le ||Y_n - Y_N|| + ||Y_N - Y|| \le \epsilon/3 + \epsilon/3 < \epsilon.$$

This shows that $\{Y_n\}$ converges uniformly to Y.

We now show that Y is continuous. It suffices to show that for any $t \in I$ and any $\epsilon > 0$, there is a $\delta > 0$ such that $|Y(t) - Y(s)| < \epsilon$ for all $s \in I$ with $|s - t| < \delta$.

To see this, fix $t \in I$ and choose any $\epsilon > 0$. Then choose N so that $||Y_n - Y|| < \epsilon/3$ for all $n \ge N$.

Since Y_N is continuous, there is a $\delta > 0$ such $|Y_N(s) - Y_N(t)| < \epsilon/3$ for all $s \in I$ with $|t - s| < \delta$.

Now suppose that $|s-t| < \delta$ and $s \in I$. Then

$$\begin{aligned} |Y(s) - Y(t)| &= |(Y(s) - Y_N(s)) + (Y_N(s) - Y_N(t)) + (Y_N(t) - Y(t))| \\ &\leq |Y(s) - Y_N(s)| + |Y_N(s) - Y_N(t)| + |Y_N(t) - Y(t)| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon . \end{aligned}$$

Thus, Y is continuous.

Next consider the subset $\mathcal{F} \subset \mathcal{C}$ of continuous functions defined as follows: For fixed numbers $t_0 \in I$, y_0 and b > 0,

 $\mathcal{F} = \{Y \in \mathcal{C} : Y(t_0) = y_0, \text{ and } |Y(t) - y_0| \le b \text{ for all } t \in I\}.$

Theorem 2. Let $\{Y_n\}$ be a Cauchy sequence of functions in \mathcal{F} . Then the limit $Y = \lim_{n \to \infty} Y_n$ is also in \mathcal{F} .

Proof. By the previous theorem, we know that Y is continuous, so we need only check that $Y(t_0) = y_0$ and $|Y(t) - y_0| \le b$ for $t \in I$. But $Y(t_0) = \lim_{n \to \infty} Y_n(t_0) = y_0$; and since $|Y_n(t) - y_0| \le b$ for all t and all n, clearly

$$Y(t) - y_0| = \lim_{n \to \infty} |Y_n(t) - y_0| \le b.$$

Thus $Y \in \mathcal{F}$.

Definition. A map $T : \mathcal{F} \to \mathcal{F}$ (i.e. a rule that assigns to every function in \mathcal{F} another function in \mathcal{F}) is called a *contraction map* if there is a constant 0 < K < 1 such that

$$||T(Y_2) - T(Y_1)|| \le K ||Y_2 - Y_1||$$

for all $Y_1, Y_2 \in \mathcal{F}$.

Theorem 3. Let $T : \mathcal{F} \to \mathcal{F}$ be a contraction map, let Y_0 be a function on \mathcal{F} , and let $\{Y_n\}$ be the sequence of functions in \mathcal{F} defined by $Y_{n+1} = T(Y_n)$. Then $\{Y_n\}$ is a Cauchy sequence. Moreover, if $Y = \lim_{n \to \infty} Y_n$, then T(Y) = Y, i.e. Y is a fixed point of T.

Proof. Let $A = ||Y_1 - Y_0||$. Since $Y_n = T^n(Y_0)$ and $Y_{n+1} = T^n(Y_1)$, we have the inequality

$$||Y_{n+1} - Y_n| \le K^n ||Y_1 - Y_0|| = AK^n$$
.

Now let m = n + k > n and estimate as follows:

$$\begin{aligned} \|Y_{n+k} - Y_n\| &= \|Y_{n+k} - Y_{n+k-1} + Y_{n+k-1} - Y_{n+k-2} + \dots + (Y_{n+1} - Y_n)\| \\ &\leq \|Y_{n+k} - Y_{n+k-1}\| + \|Y_{n+k-1} - Y_{n+k-2}\| + \dots + \|Y_{n+1} - Y_n\| \\ &\leq AK^n(K^{k-1} + K^{k-2} + \dots + K + 1) \leq \frac{AK^n}{1 - K} \end{aligned}$$

To see that $\{Y_n\}$ is Cauchy, choose any $\epsilon > 0$ and choose N so that $\frac{AK^N}{1-K} < \epsilon$. Then by the above computation, for any $n, m \ge N$, $||Y_n - Y_m|| < \epsilon$.

To see that T(Y) = Y, choose any $\epsilon > 0$. Set Z = T(Y). We claim that $|Z(t) - Y(t)| < 2\epsilon$ for all $t \in I$. To see this, choose N so that $||Y - Y_N|| < \epsilon$ and $||Y - Y_{N+1}|| < \epsilon$. It follows from this that

$$||Z - Y_{n+1}|| = ||T(Y) - T(Y_n)|| \le K ||Y - Y_n|| < \epsilon.$$

But then, $|Z(t) - Y_{n+1}(t)| < \epsilon$ and $|Y(t) - Y_{n+1}(t)| < \epsilon$. Consequently,

$$|Z(t) - Y(t)| = |Z(t) - Y_{n+1}(t) + Y_{n+1}(t) - Y(t)| \le |Z(t) - Y_{n+1}(t)| + |Y_{n+1}(t) - Y(t)| < \epsilon + \epsilon = 2\epsilon.$$

Since ϵ was arbitrary, it follows that Z(t) = Y(t) for all t.