MATH 135: COMPLEX NUMBERS

(WINTER, 2014)

The introduction of complex numbers in the 16th century made it possible to solve the equation $x^{2}+1=0$. These notes ${ }^{1}$ present one way of defining complex numbers.

1. The Complex Plane

A complex number z is given by a pair of real numbers x and y and is written in the form $z=x+i y$, where i satisfies $i^{2}=-1$. The complex numbers may be represented as points in the plane (sometimes called the Argand diagram). The real number 1 is represented by the point (1,0), and the complex number i is represented by the point $(0,1)$. The x-axis is called the "real axis", and the y-axis is called the "imaginary axis". For example, the complex numbers $3+4 i$ and $3-4 i$ are illustrated in Fig 1a.

Fig 1A

Fig 1b

Complex numbers are added in a natural way: If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{equation*}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \tag{1}
\end{equation*}
$$

Fig 1B illustrates the addition $(4+i)+(2+3 i)=(6+4 i)$. Multiplication is given by

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

Note that the product behaves exactly like the product of any two algebraic expressions, keeping in mind that $i^{2}=-1$. Thus,

$$
(2+i)(-2+4 i)=2(-2)+8 i-2 i+4 i^{2}=-8+6 i
$$

We call x the real part of z and y the imaginary part, and we write $x=\operatorname{Re} z, y=\operatorname{Im} z$. (Remember: $\operatorname{Im} z$ is a $\overline{\text { real number.) The term "imaginary" is an historical holdover; it took mathematicians }}$
${ }^{1}$ These notes are based on notes written by Bob Phelps, with modifications by Tom Duchamp.
some time to accept the fact that i (for "imaginary", naturally) was a perfectly good mathematical object. Electrical engineers (who make heavy use of complex numbers) reserve the letter i to denote electric current and they use j for $\sqrt{-1}$.

There is only one way we can have $z_{1}=z_{2}$, namely, if $x_{1}=x_{2}$ and $y_{1}=y_{2}$. An equivalent statement (one that is important to keep in mind) is that $z=0$ if and only if $\operatorname{Re} z=0$ and $\operatorname{Im} z=0$. If a is a real number and $z=x+i y$ is complex, then $a z=a x+i a y$ (which is exactly what we would get from the multiplication rule above if z_{2} were of the form $z_{2}=a+i 0$). Division is more complicated (although we will show later that the polar representation of complex numbers makes it easy). To find z_{1} / z_{2} it suffices to find $1 / z_{2}$ and then multiply by z_{1}. The rule for finding the reciprocal of $z=x+i y$ is given by:

$$
\begin{equation*}
\frac{1}{x+i y}=\frac{1}{x+i y} \cdot \frac{x-i y}{x-i y}=\frac{x-i y}{(x+i y)(x-i y)}=\frac{x-i y}{x^{2}+y^{2}} \tag{2}
\end{equation*}
$$

The expression $x-i y$ appears so often and is so useful that it is given a name. It is called the complex conjugate of $z=x+i y$ and a shorthand notation for it is \bar{z}; that is, if $z=x+i y$, then $\bar{z}=x-i y$. For example, $\overline{3+4 i}=3-4 i$, as illustrated in the Fig 1A. Note that $\overline{\bar{z}}=z$ and $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$. Exercise (3b) is to show that $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$. Another important quantity associated with a given complex number z is its modulus

$$
|z|=(z \bar{z})^{1 / 2}=\sqrt{x^{2}+y^{2}}=\left((\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}\right)^{1 / 2}
$$

Note that $|z|$ is a real number. For example, $|3+4 i|=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$. This leads to the inequality

$$
\begin{equation*}
\operatorname{Re} z \leq|\operatorname{Re} z|=\sqrt{(\operatorname{Re} z)^{2}} \leq \sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}}=|z| \tag{3}
\end{equation*}
$$

Similarly, $\operatorname{Im} z \leq|\operatorname{Im} z| \leq|z|$.

Exercises 1.

(1) Prove that the product of $z=x+i y$ and the expression in (2) (above) equals 1.
(2) Verify each of the following:
(a) $(\sqrt{2}-i)-i(1-\sqrt{2} i)=-2 i$
(b) $\frac{1+2 i}{3-4 i}+\frac{2-i}{5 i}=-\frac{2}{5}$
(c) $\frac{5}{(1-i)(2-i)(3-i)}=\frac{1}{2} i$
(d) $(1-i)^{4}=-4$
(3) Prove the following:
(a) $z+\bar{z}=2 \operatorname{Re} z$ and z is a real number if and only if $\bar{z}=z$.
(b) $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$.
(4) Prove that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ (Hint: Use (3b).)
(5) Find all complex numbers $z=x+i y$ such that $z^{2}=1+i$.

2. Polar Representation of Complex Numbers

Recall that the plane has polar coordinates as well as rectangular coordinates. The relation between the rectangular coordinates (x, y) and the polar coordinates (r, θ) is

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\arctan \frac{y}{x}
$$

(If $z=0$, then $r=0$ and θ can be anything.)
Thus, for the complex number $z=x+i y$, we can write

$$
z=r(\cos \theta+i \sin \theta)
$$

There is another way to rewrite this expression for z. Later in the course, we will show that e^{x} can be expressed as the following power series (i.e. as an infinite sum of powers of x):

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

For any complex number z, we define e^{z} by the power series:

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots+\frac{z^{n}}{n!}+\ldots
$$

In particular,

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\ldots+\frac{(i \theta)^{n}}{n!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\ldots
\end{aligned}
$$

The functions $\cos \theta$ and $\sin \theta$ can also be written as power series:

$$
\begin{aligned}
& \cos \theta=1-\frac{\theta^{2}}{2}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots \pm \frac{(-1)^{n} \theta^{2 n}}{(2 n)!} \pm \ldots \\
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots \pm \frac{(-1)^{n} \theta^{2 n+1}}{(2 n+1)!} \pm \ldots
\end{aligned}
$$

Thus
(the power series for $\left.e^{i \theta}\right)=($ the power series for $\cos \theta)+i \cdot($ the power series for $\sin \theta)$ This is the Euler Formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

For example,

$$
e^{i \pi / 2}=i, \quad e^{\pi i}=-1 \quad \text { and } \quad e^{2 \pi i}=+1
$$

Given $z=x+i y$, then z can be written in the form $z=r e^{i \theta}$, where

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}}=|z| \quad \text { and } \quad \theta=\tan ^{-1} \frac{y}{x} \tag{4}
\end{equation*}
$$

For example the complex number $z=8+6 i$ may also be written as $10 e^{i \theta}$, where $\theta=\arctan (.75) \approx$.64 radians. This is illustrated in Fig 2.

FIG 2
If $z=-4+4 i$, then $r=\sqrt{4^{2}+4^{2}}=4 \sqrt{2}$ and $\theta=3 \pi / 4$, therefore $z=4 \sqrt{2} e^{3 \pi i / 4}$. Any angle which differs from $3 \pi / 4$ by an integer multiple of 2π will give us the same complex number. Thus, $-4+4 i$ can also be written as $4 \sqrt{2} e^{11 \pi i / 4}$ or as $4 \sqrt{2} e^{-5 \pi i / 4}$. In general, if $z=r e^{i \theta}$, then we also have $z=r e^{i(\theta+2 \pi k)}, k=0, \pm 1, \pm 2, \ldots$ Moreover, there is ambiguity in equation (4) about the inverse tangent which can (and must) be resolved by looking at the signs of x and y, respectively, in order to determine the quadrant in which θ lies. If $x=0$, then the formula for θ makes no sense, but $x=0$ simply means that z lies on the imaginary axis and so θ must be $\pi / 2$ or $3 \pi / 2$ (depending on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite as simple as they were for rectangular coordinates. If $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then $z_{1}=z_{2}$ if and only if $r_{1}=r_{2}$ and $\theta_{1}=\theta_{2}+2 \pi k, k=0, \pm 1, \pm 2, \ldots$ Despite this, the polar representation is very useful when it comes to multiplication:

$$
\begin{equation*}
\text { if } z_{1}=r_{1} e^{i \theta_{1}} \quad \text { and } \quad z_{2}=r_{2} e^{i \theta_{2}}, \text { then } \quad z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \tag{5}
\end{equation*}
$$

To see why this is true, write $z_{1} z_{2}=r e^{i \theta}$, so that $r=\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|=r_{1} r_{2}$ (the next-to-last equality uses $\operatorname{Ex}(4 \mathrm{a}))$. It remains to show that $\theta=\theta_{1}+\theta_{2}$, that is, that $e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$, (this is Exercise (7a)). For example, let

$$
\begin{gathered}
z_{1}=2+i=\sqrt{5} e^{i \theta_{1}}, \\
\theta_{1} \approx 0.464 \\
z_{2}=-2+4 i=\sqrt{20} e^{i \theta_{2}},
\end{gathered} \quad \theta_{2} \approx 2.034
$$

Then $z_{3}=z_{1} z_{2}$, where:

$$
z_{3}=-8+6 i=\sqrt{100} e^{i \theta_{3}} \quad \theta_{3} \approx 2.498
$$

Fig 3
Applying (5) to $z_{1}=z_{2}=-4+4 i=4 \sqrt{2} e^{\frac{3}{4} \pi i}$ (our earlier example), we get

$$
(4+4 i)^{2}=\left(4 \sqrt{2} e^{\frac{3}{4} \pi i}\right)^{2}=32 e^{\frac{3}{2} \pi i}=-32 i .
$$

By an easy induction argument, the formula in (5) can be used to prove that for any positive integer n

$$
\text { If } z=r e^{i \theta}, \quad \text { then } \quad z^{n}=r^{n} e^{i n \theta}
$$

This makes it easy to solve equations like $z^{3}=1$. Indeed, writing the unknown number z as $r e^{i \theta}$, we have $r^{3} e^{i 3 \theta}=1 \equiv e^{0 i}$, hence $r^{3}=1$ (so $r=1$) and $3 \theta=2 k \pi, k=0, \pm 1, \pm 2, \ldots$. It follows that $\theta=2 k \pi / 3, k=0, \pm 1, \pm 2, \ldots$ There are only three distinct complex numbers of the form $e^{2 k \pi i / 3}$, namely $e^{0}=1, e^{2 \pi i / 3}$ and $e^{4 \pi i / 3}$. The following figure illustrates $z=8 i=8 e^{i \pi / 2}$ and its three cube roots $z_{1}=2 e^{i \pi / 6}, z_{2}=2 e^{5 i \pi / 6}$, $z_{3}=2 e^{9 i \pi / 6}$

Fig 4
From the fact that $\left(e^{i \theta}\right)^{n}=e^{i n \theta}$ we obtain De Moivre's formula:

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

By expanding on the left and equating real and imaginary parts, this leads to trigonometric identities which can be used to express $\cos n \theta$ and $\sin n \theta$ as a sum of terms of the form $(\cos \theta)^{j}(\sin \theta)^{k}$. For example, taking $n=2$ one gets $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$. For $n=3$ one gets $\cos 3 \theta=$ $\cos ^{3} \theta-\cos \theta \sin ^{2} \theta-2 \sin ^{2} \theta \cos ^{2} \theta$.

Exercises 2.

(1) Let $z_{1}=3 i$ and $z_{2}=2-2 i$
(a) Plot the points $z_{1}+z_{2}, z_{1}-z_{2}$ and $\overline{z_{2}}$.
(b) Compute $\left|z_{1}+z_{2}\right|$ and $\left|z_{1}-z_{2}\right|$.
(c) Express z_{1} and z_{2} in polar form.
(2) Prove the following:
(a) $e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$.
(b) Use (a) to show that $\left(e^{i \theta}\right)^{-1}=e^{-i \theta}$, that is, $e^{-i \theta} e^{i \theta}=1$.
(3) Let $z_{1}=6 e^{i \pi / 3}$ and $z_{2}=2 e^{-i \pi / 6}$. Plot $z_{1}, z_{2}, z_{1} z_{2}$ and z_{1} / z_{2}.
(4) Find all complex numbers z which satisfy $z^{3}=-1$.
(5) Find all complex numbers $z=r e^{i \theta}$ such that $z^{2}=\sqrt{2} e^{i \pi / 4}$.

3. Complex-valued Functions

Now suppose that $w=w(t)$ is a complex-valued function of the real variable t. That is

$$
w(t)=u(t)+i v(t)
$$

where $u(t)$ and $v(t)$ are real-valued functions. A complex-valued function can be thought of a defining a curve in the complex plane.

The derivative of $w(t)$ with respect to t is defined to be the function

$$
w^{\prime}(t)=u^{\prime}(t)+i v^{\prime}(t)
$$

(This is just like the definition of the derivative of a vector-valued function-just differentiate the components.) The derivative can be thought of as the tangent to the complex curve.

There are three commonly used ways to denote the derivative:

$$
w^{\prime}(t)=\frac{d w}{d t}=\dot{w}(t)
$$

We will use all three.
It is easily checked (just expand the left and right hand sides of each identity) that the following formulas hold for complex-valued functions $z=z(t)$ and $w=w(t)$:

$$
\begin{aligned}
& C^{\prime}=0 \text { where } C=\text { constant } \\
& (z+w)^{\prime}=z^{\prime}+w^{\prime} \\
& (z w)^{\prime}=z^{\prime} w+z w^{\prime} \\
& (C z)^{\prime}=C z^{\prime} \text { where } C=\mathrm{constant} \\
& \left(z^{n}\right)^{\prime}=n z^{n-1} z^{\prime}
\end{aligned}
$$

One function is of particular interest to us: the complex exponential function. It is defined as follows:

$$
e^{(\rho+i \omega) t}=e^{\rho t} e^{i \omega t}=e^{\rho t} \cos (\omega t)+i e^{\rho t} \sin (\omega t)
$$

Thought of as a curve in the complex plane, the complex exponential is the formula for a spiral curve. The quantity ω is the angular velocity of the spiral $(\omega>0$ corresponds to a counterclockwise spiral, $\omega<0$ to a clockwise one). The quantity ρ measures the rate at which the spiral expands outward $(\rho>0)$ or inward $(\rho<0)$.

Fig 4A

Fig 4B

Computing the derivatives of the real and imaginary parts and collecting terms yields the formula $\left(e^{(\rho+i \omega) t}\right)^{\prime}=(\rho+i \omega) e^{(\rho+i \omega) t}$. In other words, even if r is a complex number, the formula

$$
\frac{d}{d t} e^{r t}=r e^{r t}
$$

holds!

$$
\text { 4. The function } x(t)=e^{\rho t}\left(C_{1} \cos (\omega t)+C_{2} \sin (\omega t)\right)
$$

We want to write the function

$$
x(t)=C_{1} e^{\rho t} \cos (\omega t)+C_{2} e^{\rho t} \sin (\omega t)
$$

in the form

$$
x(t)=A e^{\rho t} \cos (\omega t-\phi), .
$$

The reason for rewriting $x(t)$ in this way is that it gives an easy way to figure out what its graph looks like.

First notice that

$$
A e^{\rho t} \cos (\omega t-\phi)=(A \cos (\phi) \cos (\omega t)+A \sin (\phi) \sin (\omega t)) e^{\rho t}
$$

So

$$
A \cos (\phi)=C_{1} \text { and } A \sin (\phi)=C_{2} .
$$

The relation among the quantities ρ, A, C_{1} and C_{2} is expressed in the next figure:

From Fig 6 it is clear that

$$
A=\sqrt{C_{1}^{2}+C_{2}^{2}} \text { and } \tan (\phi)=\frac{C_{2}}{C_{1}} .
$$

Example 1. Consider the function

$$
x(t)=(5 \cos (2 t)+4 \sin (2 t)) e^{-t / 5}
$$

The point $\left(C_{1}, C_{2}\right)=(5,4)$ is in the first quadrant so $0<\phi<\pi / 2$. So

$$
A=\sqrt{5^{2}+4^{2}}=\sqrt{41} \text { and } \phi=\tan ^{-1}(4 / 5)
$$

Hence,

$$
(5 \cos (2 t)+4 \sin (2 t)) e^{-t / 5}=\sqrt{41} e^{-t / 5} \cos \left(2 t-\tan ^{-1}(4 / 5)\right)
$$

The sketch of this curve is:

FIG 5

Note: There is an alternate description of $x(t)$ that makes direct used of the polar form of complex numbers. Let $C=5-4 i$ (note the sign change!) and $\rho+i \omega=-1 / 5+2 i$. Then it is easily verified that

$$
x(t)=\operatorname{Re}\left((5-4 i) e^{(-1 / 5+2 i) t}\right)
$$

To see that, compute as follows:

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left(\sqrt{41} e^{-t / 5} e^{i\left(2 t+\tan ^{-1}(-4 / 5)\right)}\right) \\
& \left.=\sqrt{41} e^{-t / 5} \cos \left(2 t+\tan ^{-1}(-4 / 5)\right)\right) \\
& =\sqrt{41} e^{-t / 5} \cos \left(2 t-\tan ^{-1}(4 / 5)\right)
\end{aligned}
$$

Exercises 3.

(1) Sketch the graph of the curve

$$
z(t)=(2+2 i) e^{\left(\frac{1}{2}+\pi i\right) t}
$$

for $0 \leq t \leq 3$. Sketch the graph of $x=x(t)=\operatorname{Re}(z(t))$.
(2) consider the function

$$
x(t)=3 e^{-2 t} \cos (4 t)-5 e^{-2 t} \sin (4 t)
$$

Write it in each of the forms

$$
x(t)=A e^{\rho t} \cos (\omega t-\phi)
$$

and

$$
x(t)=\operatorname{Re}\left(C e^{r t}\right)
$$

where A, ω and ϕ are real numbers and C and r are complex numbers.

