MATH 135: COMPLEX NUMBERS

(WINTER, 2014)

The introduction of complex numbers in the 16th century made it possible to solve the equation
22 4+ 1 = 0. These notes' present one way of defining complex numbers.

1. THE COMPLEX PLANE

A complex number z is given by a pair of real numbers z and y and is written in the form

z = x + iy, where 7 satisfies i> = —1. The complex numbers may be represented as points in the
plane (sometimes called the Argand diagram). The real number 1 is represented by the point (1,0),
and the complex number i is represented by the point (0,1). The z-axis is called the “real axis”,
and the y-axis is called the “imaginary axis”. For example, the complex numbers 3 4+ 47 and 3 — 44
are illustrated in F1G 1A.
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Complex numbers are added in a natural way: If zy = x1 + iy1 and zo = 9 + iy2, then

(1) 21+ 22 = (z1 + 22) +i(y1 + y2)
F1c 1B illustrates the addition (4 +7) 4+ (2 + 3i) = (6 + 4¢). Multiplication is given by

z122 = (1122 — Y1y2) +i(T1Y2 + T2y1)
Note that the product behaves exactly like the product of any two algebraic expressions, keeping
in mind that 2 = —1. Thus,

(24+4) (=24 4i) = 2(—2) + 8 — 2i + 4i* = —8 + 6i
We call x the real part of z and y the imaginary part, and we write z = Re z, y = Im 2. (Remem-
ber: Im z is a real number.) The term “imaginary” is an historical holdover; it took mathematicians
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some time to accept the fact that ¢ (for “imaginary”, naturally) was a perfectly good mathematical
object. Electrical engineers (who make heavy use of complex numbers) reserve the letter 7 to denote
electric current and they use j for v/—1.

There is only one way we can have z; = zo, namely, if 1 = 2 and y; = y». An equivalent
statement (one that is important to keep in mind) is that z = 0 if and only if Rez = 0 and Im z = 0.
If a is a real number and z = x + iy is complex, then az = ax + iay (which is exactly what we
would get from the multiplication rule above if zo were of the form zo = a 4 i0). Division is more
complicated (although we will show later that the polar representation of complex numbers makes
it easy). To find z;/z9 it suffices to find 1/z9 and then multiply by z;. The rule for finding the
reciprocal of z = x + iy is given by:

r 1 r—1y T — 1y _x—1y
r4iy x+iy x—iy (v+ay)(e—iy) 22 +y?

(2)

The expression x — iy appears so often and is so useful that it is given a name. It is called
the complex conjugate of z = x + iy and a shorthand notation for it is Z; that is, if z = = + 1y,
then Z = x — iy. For example, 3+ 4i = 3 — 44, as illustrated in the F1¢ 1A . Note that 7 = 2
and z1 + zo = Z1 + Z2. Exercise (3b) is to show that Z7z3 = Z1Z2. Another important quantity
associated with a given complex number z is its modulus

2| = (22)Y2 = Va2 + 42 = ((Rez)? + (Imz)2)1/2
Note that |z| is a real number. For example, |3 4+ 4i| = v/3% + 42 = /25 = 5. This leads to the
inequality

(3) Rez < [Rez| = v/(Rez)2 < /(Re2)? + (Im2)? = |7|
Similarly, Im z < [Im z| < |z|.

Exercises 1.
(1) Prove that the product of z = z + iy and the expression in (2) (above) equals 1.
(2) Verify each of the following:
. 1+2¢ 2—4 2
2—4)—i(l —V2i) = —2i b - _Z
(a) (V2 z)5z( \[z)l i (b) 3—4z'+ 5 z
=i d) (1-i)*=-4
©) Tohe—ae=n " 2 (d) (=1
(3) Prove the following:
(a) z+Z = 2Rez and z is a real number if and only if Z = 2.
(b) 2129 = Z1%29.
(4) Prove that |z122| = |z1]|22| (Hint: Use (3b).)
(5) Find all complex numbers z = z + 4y such that z? = 1 + 1.

2. POLAR REPRESENTATION OF COMPLEX NUMBERS

Recall that the plane has polar coordinates as well as rectangular coordinates. The relation
between the rectangular coordinates (z,y) and the polar coordinates (r,0) is

x =rcost and y =rsinf
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r=+/x2+y>? and § = arctan 2

x
(If z =0, then r = 0 and 6 can be anything.)

Thus, for the complex number z = x + iy, we can write

z=r(cosf +isinf).
There is another way to rewrite this expression for z. Later in the course, we will show that e* can
be expressed as the following power series (i.e. as an infinite sum of powers of z):
relrar T T
e’ = sttt
For any complex number z, we define e* by the power series:

. 22 28 2"
In particular,
. 1] 2 1] 3 T
e? = 140+ (i6) + (i) +...+u+...
2! 3! n!
. 62 i3 94
The functions cos 8 and sin# can also be written as power series:
02 04 96 (_1)710271
b=1-—+———+...£—F——+...
o8 SRR (2n)!
03 05 97 (_1)n92n+1
nf=0— —+———+4+... £ —F——
s TR T 2n +1)!

Thus
(the power series for ') = (the power series for cos ) + i - (the power series for sin 6)

This is the Euler Formula:

e = cosf +isind

For example,

™2 =i e =-1 and ¥ =41

Given z = x + iy, then z can be written in the form z = re®®, where

(1) r=VaTtyP=le| and 6=tant?

T

For example the complex number z = 8 4 6i may also be written as 10e?’, where § = arctan(.7 5) ~
.64 radians. This is illustrated in Fi1g 2.
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8 + 6i = 10e 5%

0 ~ .64

Fic 2

If 2 = —4+4i, then r = V42 + 42 = 4y/2 and 0 = 37/4, therefore z = 4v/2¢>™/. Any angle
which differs from 37/4 by an integer multiple of 27 will give us the same complex number. Thus,
—4 + 4i can also be written as 4v/2e'™/* or as 4v/2¢°™/4. In general, if z = re'?, then we also
have z = rei(9+2”k), k = 0,£1,4+2,.... Moreover, there is ambiguity in equation (4) about the
inverse tangent which can (and must) be resolved by looking at the signs of x and y, respectively,
in order to determine the quadrant in which @ lies. If x = 0, then the formula for # makes no sense,
but x = 0 simply means that z lies on the imaginary axis and so # must be 7/2 or 37 /2 (depending
on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite as
simple as they were for rectangular coordinates. If z; = r1et and zy = ree?, then z; = 29 if and
only if 11 =r9 and 0y = 02 + 2wk, k =0,+1,+2,.... Despite this, the polar representation is very
useful when it comes to multiplication:

62 7:(914”02)
)

(5) if 21 =7 and 29 = roe’ then z129 = ri79e

To see why this is true, write z129 = re', so that r = |212s| = |21||22] = rire (the next-to-last
equality uses Ex (4a)). It remains to show that § = 6] + 65, that is, that €102 = ¢!(01+02) (this
is Exercise (7a)). For example, let

21 =2+1i=be, 0; ~ 0.464
29 = —2 4 4i = /2062, 0y =~ 2.034

Then z3 = 2129, where:

23 = —8 + 6i = V100" 03 ~ 2.498
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10¢s
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Fic 3
Applying (5) to 21 = z0 = -4+ 4i = 4ﬂe%”i (our earlier example), we get

(4 + 49)? = (4v/2e1™)2 = 32¢3™ = —32i,
By an easy induction argument, the formula in (5) can be used to prove that for any positive integer
n
If z=re% then z"=r"e™?

This makes it easy to solve equations like 2% = 1. Indeed, writing the unknown number z as re®,
we have r3e?? = 1 = €% hence r® =1 (sor = 1) and 30 = 2km, k = 0,£1,+2,.... It follows that
0 = 2kr/3, k =0,£1,42,.... There are only three distinct complex numbers of the form e2kmi/3
namely e’ = L, e2mi/3 and ¢4’”/ 3. The following figure illustrates z = 8/ = 8¢'™/2 and its three cube
roots z1 = 26”/6, Z9 = 265”/6, 23 = 2¢9im/6

1 8i= 8™/
2¢5mi/6 2¢mi/6
‘ 2697ri/6
Fi1G 4

From the fact that (e?)" = ¢ we obtain De Moivre’s formula:

(cosf + isinf)™ = cosnb + isinnd
By expanding on the left and equating real and imaginary parts, this leads to trigonometric iden-
tities which can be used to express cosnf and sinnf as a sum of terms of the form (cos 6)7(sin 6)F.
For example, taking n = 2 one gets cos20 = cos?f — sin?6. For n = 3 one gets cos36 =
cos® § — cos fsin? § — 2sin? f cos? 6.
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Exercises 2.
(1) Let 21 = 3i and 20 =2 — 2¢
(a) Plot the points z1 + 22, 21 — 22 and Z3.
(b) Compute |z1 + 22| and |z1 — 22].
(c) Express z; and z9 in polar form.
(2) Prove the following:
(a) o102 — i(01+02)
(b) Use (a) to show that (e?)™! = e~ that is, e e = 1.
(3) Let 21 = 6e'™/3 and zo = 2e /6. Plot 21, 29, 2122 and 21/ 7.
(4) Find all complex numbers z which satisfy 2% = —1.
(5) Find all complex numbers z = r¢? such that 22 = v/2¢'™/4.

3. COMPLEX-VALUED FUNCTIONS

Now suppose that w = w(t) is a complex-valued function of the real variable ¢. That is
w(t) = u(t) + tv(t)

where u(t) and v(t) are real-valued functions. A complex-valued function can be thought of a
defining a curve in the complex plane.
The derivative of w(t) with respect to t is defined to be the function

w'(t) =/ (t) + i ()

(This is just like the definition of the derivative of a vector-valued function—just differentiate the
components.) The derivative can be thought of as the tangent to the complex curve.
There are three commonly used ways to denote the derivative:

_dw

w'(t) = o

= ().

We will use all three.
It is easily checked (just expand the left and right hand sides of each identity) that the following
formulas hold for complex-valued functions z = z(t) and w = w(t):

C' = 0 where C' = constant
(z+w) =2 +u

(zw) = 2'w + 20’

(Cz) = C% where C = constant
(

!/ — /
2 =n"

One function is of particular interest to us: the compler exponential function. It is defined as
follows:

Pt — Pttt — Pt cog(wt) + e sin(wt) .

Thought of as a curve in the complex plane, the complex exponential is the formula for a spiral
curve. The quantity w is the angular velocity of the spiral (w > 0 corresponds to a counterclockwise
spiral, w < 0 to a clockwise one). The quantity p measures the rate at which the spiral expands
outward (p > 0) or inward (p < 0).
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Computing the derivatives of the real and imaginary parts and collecting terms yields the formula

N )
<e(p+“")t) =(p+ iw)e(p+m)t. In other words, even if r is a complex number, the formula

d rt rt
—€e =Te
dt

holds!

4. THE FUNCTION x(t) = e”*(C} cos(wt) + Co sin(wt))
We want to write the function
x(t) = Cref" cos(wt) + Coe? sin(wt)
in the form
z(t) = Ae? cos(wt — @) ,.

The reason for rewriting z(t) in this way is that it gives an easy way to figure out what its graph
looks like.
First notice that

Aef" cos(wt — ¢) = (Acos(¢) cos(wt) + Asin(e)sin(wt)) e
So
Acos(¢p) = C1 and Asin(¢) = Cs.
The relation among the quantities p, A, C7 and Cs is expressed in the next figure:

o

Fic 6

A =4/C?+ C2 and tan(¢) = gg
1

From Fig 6 it is clear that
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Example 1. Consider the function
z(t) = (5cos(2t) + 4sin(2t))e /7.
The point (Cy,C2) = (5,4) is in the first quadrant so 0 < ¢ < 7/2. So
A=1/524+42 =41 and ¢ = tan"'(4/5) .

Hence,
(5 cos(2t) + 4sin(2t))e 5 = V41 e cos (2t — tan~'(4/5)) .
The sketch of this curve is:

L
(A

é\//l\b\//\ls\’ 20
_al

Fic 5

Note: There is an alternate description of z(¢) that makes direct used of the polar form of complex
numbers. Let C' =5 — 4i (note the sign change!) and p +iw = —1/5+ 2i. Then it is easily verified
that

(1) = Re ((5 - 4i)e(_1/5+2i)t>

To see that, compute as follows:

2(t) = Re (me—t/Sei(Qt—&-tan*l(—4/5)))

= VA4le V5 cos(2t + tan~' (—4/5)))
= V41e /% cos(2t — tan~1(4/5))

Exercises 3.
(1) Sketch the graph of the curve
2(t) = (2 + 2i)elztmi)t
for 0 <t < 3. Sketch the graph of x = z(t) = Re(2(t)).
(2) consider the function
x(t) = 3% cos(4t) — be ' sin(4t) .
Write it in each of the forms
z(t) = Aeltcos(wt — ¢)

and
z(t) = Re (Ce™)
where A, w and ¢ are real numbers and C' and r are complex numbers.



