One way that sequences are often defined is by recursion. More precisely, suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function and x_{0} is a real number. Then we may defined a sequence $\left\{x_{n}\right\}$ iteratively by the formula

$$
x_{n+1}=f\left(x_{n}\right) \text { for } n=0,1,2, \ldots
$$

The purpose of this handout, is to give a criterion for such a sequence to converge.

We begin with some definitions. Throughout this handout, $\Omega \subset \mathbb{R}$ denotes a set of one of the forms $[a, b]$ for $a<b,[a, \infty),(-\infty, b]$, or \mathbb{R}; and f denotes a function of the form

$$
f: \Omega \rightarrow \Omega
$$

(i.e. Ω is the domain of f and the range of f is contained in Ω.

Definition 1. The function f is said to be a contraction map if there is a real number K with $0<K<1$ for which

$$
|f(x)-f(y)| \leq K|x-y| \text { for all } x, y \in \Omega
$$

Lemma 1. If f is a contraction map then f is continuous on Ω.
Proof. Exercise.

Definition 2. A point $x_{0} \in \Omega$ is called a fixed point of f if $f\left(x_{0}\right)=x_{0}$.
Lemma 2. A contraction map has at most one fixed point.
Proof. Exercise.
Theorem. Let $f: \Omega \rightarrow \Omega$ be a contraction map and let $x_{0} \in \Omega$. Then the sequence $\left\{x_{n}\right\}$ defined inductively by

$$
x_{n+1}=f\left(x_{n}\right)
$$

is a Cauchy sequence. Moreover, the limit $x_{\infty}=\lim _{n \rightarrow \infty} x_{n}$ is a fixed point of f.
We will prove the theorem through a series of lemmas.
Lemma 3. Suppose $x_{n} \rightarrow x_{\infty}$. Then x_{∞} is a fixed point.
Proof. First note since Ω is either a closed interval or all of \mathbb{R}, then $x_{\infty} \in \Omega$. Hence $f\left(x_{\infty}\right)$ is defined. (Why?)
To see that $f\left(x_{\infty}\right)=x_{\infty}$. Choose any $\epsilon>0$. Then there is an integer $N>0$ such that $\left|x_{n}-x_{\infty}\right|<\epsilon$ for all $n \geq N$. Choose any $n \geq N$, and notice that $x_{n+1}=f\left(x_{n}\right)$. Now use the triangle inequality to estimate as follows:
$\left|f\left(x_{\infty}\right)-x_{\infty}\right|=\left|f\left(x_{\infty}\right)-f\left(x_{n}\right)+f\left(x_{n}\right)-x_{\infty}\right| \leq\left|f\left(x_{\infty}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-x_{\infty}\right| \leq K\left|x_{\infty}-x_{n}\right|+\left|x_{n+1}-x_{\infty}\right|<2 \epsilon$.
Since ϵ was arbitrary, it follows that $f\left(x_{\infty}\right)=x_{\infty}$. \square
Lemma 4. The sequence $\left\{x_{n}\right\}$ is bounded.
Proof. Let $A=\left|x_{1}-x_{0}\right|$. Observe that for any $n>1$,

$$
\left|x_{n}-x_{n-1}\right|=\mid f\left(x_{n-1}\right)-f\left(x_{n-2}|\leq K| x_{n-1}-x_{n-2} \mid\right.
$$

Repeating this step n-times yields the inequality

$$
\left|x_{n}-x_{n-1}\right| \leq A K^{n-1} \text { for all } n
$$

Thus,

$$
\begin{aligned}
\left|x_{n}-x_{0}\right| & =\left|x_{n}-x_{n-1}+x_{n-1}-x_{n-2}+x_{n-2}+\cdots+\left(x_{1}-x_{0}\right)\right| \\
& \leq\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{1}-x_{0}\right| \\
& \leq\left(K^{n-1}+K^{n-2}+\cdots+K+1\right) A \leq \frac{A}{1-K} .
\end{aligned}
$$

Let $R=A /(1-K)$, then $\left|x_{n}-x_{0}\right| \leq R$ for all n.
Lemma 5. The sequence $\left\{x_{n}\right\}$ is Cauchy.
Proof. Choose any $\epsilon>0$. Since $0<K<1$, there is an integer $N>0$ for which

$$
2 R K^{N}<\epsilon .
$$

where R is as in the proof of the previous lemma.
We claim that $\left|x_{n}-x_{m}\right|<\epsilon$ for all $n, m \geq N$.
To see this, note first that by definition of R,

$$
\left|x_{n-N}-x_{0}\right| \leq R \text { and }\left|x_{m-N}-x_{0}\right| \leq R .
$$

Hence, by the triangle inequality, $\left|x_{n-N}-x_{m-N}\right| \leq 2 R$. Now observe that

$$
x_{n}=(f \circ f \circ \cdots \circ f)\left(x_{n-N}\right) \text { and } x_{m}=(f \circ f \circ \cdots \circ f)\left(x_{m-N}\right) .
$$

(Here f is composed with itself N-times). Therefore,

$$
\left|x_{m}-x_{n}\right| \leq K^{N}\left|x_{m-N}-x_{n-N}\right| \leq 2 R K^{N}<\epsilon,
$$

which is what we needed to prove.

