
Math 135A, Winter 2014 Fixed Points

One way that sequences are often defined is by recursion. More precisely, suppose that f : R→ R
is a function and x0 is a real number. Then we may defined a sequence {xn} iteratively by the
formula

xn+1 = f(xn) for n = 0, 1, 2, . . . .

The purpose of this handout, is to give a criterion for such a sequence to converge.

We begin with some definitions. Throughout this handout, Ω ⊂ R denotes a set of one of the forms
[a, b] for a < b, [a,∞), (−∞, b], or R; and f denotes a function of the form

f : Ω→ Ω

(i.e. Ω is the domain of f and the range of f is contained in Ω.

Definition 1. The function f is said to be a contraction map if there is a real number K with
0 < K < 1 for which

|f(x)− f(y)| ≤ K|x− y| for all x, y ∈ Ω.

Lemma 1. If f is a contraction map then f is continuous on Ω.

Proof. Exercise.

Definition 2. A point x0 ∈ Ω is called a fixed point of f if f(x0) = x0.

Lemma 2. A contraction map has at most one fixed point.

Proof. Exercise.

Theorem. Let f : Ω → Ω be a contraction map and let x0 ∈ Ω. Then the sequence {xn} defined
inductively by

xn+1 = f(xn)

is a Cauchy sequence. Moreover, the limit x∞ = lim
n→∞

xn is a fixed point of f .

We will prove the theorem through a series of lemmas.

Lemma 3. Suppose xn → x∞. Then x∞ is a fixed point.

Proof. First note since Ω is either a closed interval or all of R, then x∞ ∈ Ω. Hence f(x∞) is
defined. (Why?)

To see that f(x∞) = x∞. Choose any ε > 0. Then there is an integer N > 0 such that |xn−x∞| < ε
for all n ≥ N . Choose any n ≥ N , and notice that xn+1 = f(xn). Now use the triangle inequality
to estimate as follows:

|f(x∞)−x∞| = |f(x∞)−f(xn)+f(xn)−x∞| ≤ |f(x∞)−f(xn)|+|f(xn)−x∞| ≤ K|x∞−xn|+|xn+1−x∞| < 2ε .

Since ε was arbitrary, it follows that f(x∞) = x∞.�

Lemma 4. The sequence {xn} is bounded.

Proof. Let A = |x1 − x0|. Observe that for any n > 1,

|xn − xn−1| = |f(xn−1)− f(xn−2| ≤ K|xn−1 − xn−2| .
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Repeating this step n-times yields the inequality

|xn − xn−1| ≤ AKn−1 for all n.

Thus,

|xn − x0| = |xn − xn−1 + xn−1 − xn−2 + xn−2 + · · ·+ (x1 − x0)|
≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |x1 − x0|

≤ (Kn−1 +Kn−2 + · · ·+K + 1)A ≤ A

1−K
.

Let R = A/(1−K), then |xn − x0| ≤ R for all n. �

Lemma 5. The sequence {xn} is Cauchy.

Proof. Choose any ε > 0. Since 0 < K < 1, there is an integer N > 0 for which

2RKN < ε .

where R is as in the proof of the previous lemma.

We claim that |xn − xm| < ε for all n,m ≥ N .

To see this, note first that by definition of R,

|xn−N − x0| ≤ R and |xm−N − x0| ≤ R .

Hence, by the triangle inequality, |xn−N − xm−N | ≤ 2R. Now observe that

xn = (f ◦ f ◦ · · · ◦ f)(xn−N ) and xm = (f ◦ f ◦ · · · ◦ f)(xm−N ) .

(Here f is composed with itself N -times). Therefore,

|xm − xn| ≤ KN |xm−N − xn−N | ≤ 2RKN < ε ,

which is what we needed to prove.�
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