Math 135A, Winter 2014 Picard Iteration

We begin our study of Ordinary Differential Equations by considering the the problem of existence
and uniqueness of solutions of the initial value problem

Y =f(ty),  ylto) =wo- (1)

Suppose that y = Y (¢) is a solution defined for ¢ near ¢y. Then integrating both sides of (1) with

respect to t gives
t

Y(t)=Y(to) = [ f(r,Y(r))dr

to
which we can rewrite in the form

t
Y(t)=yo+ [ f(r,Y(7))dr (2)
to
Notice that differentiating both sides of (2) with respect to ¢ yields Equation (1). So Equation (2)
is equivalent to the initial value problem (1).

Picard Iteration. Under certain conditions on f (to be discussed below), the solution of (2) is
the limit of a Cauchy Sequence of functions:

Y(t) = lim Yy(t)

n—oo

where Yy(t) = yo the constant function and
t
Yo+1(t) = yo + f(r. Yo(r)) dr (3)

to

t

Example. Consider the initial value problem ¢’ = y, y(0) = 1, whose solution is y = e’ (using

techniques we learned last quarter).

Substituting f(t,y) =y, to = 0, and yp = 1 into (3) gives:
t
Yl(t):1+/ ldr =1+t
0
t
Yz(t):1+/(1+r)drzl+t+t2/2
0
t
Y:a(t)zl—l—/(1+T—|—7'2/2)d7-:1+t+t2/2+t3/6.
0

More generally, using Mathematical Induction, one can show that

k=0
Consequently,
: —t"
= 2 gy =
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Conditions on the function f(t,y). The initial value problem (1) does not always have a unique
solution, for consider the initial value problem

Wty y(0)=0

dt
0 f <0
where f(y) = { ) for 4 ; 0 Now for any a > 0, consider the function ¢, : R — R defined as
V2y fory > 0.
follows
t—a)?/2 fort>a
bult) = (t—a)?/
0 fort<a.

By construction, ¢, satisfies the initial condition ¢,(0) = 0. It also satisfies the differential equation

Pa(t) = f(da(t)) for all t;

This is clear since
¢a(t) = 0= f(0) = f(¢a(t)) for t < a;
and

—a)?
W:(t_a):\/mzf((t—a)Q/Q) fort > a.

This example shows that we need to impose conditions on f if we want to ensure that (1) has a
unique solution. Suppose that f satisfies the following condition:

Let R be the rectangular region
R={(t,y) : [t—to] <aand |y —yo| < b}, for a,b>0.
Then

(i) The function f(¢,y) is continuous as a function of ¢ for all for all (¢t,y) € R

(ii) There is a constant K > 0 such that f satisfies the inequality

[F(ty) = [t 2)] < Ky — 2]

for all (t,y) and (¢, 2) in R.
A function satisfying (ii) is said to be Lipschitz continuous with respect to y on R.

Theorem (Picard-Lindelof). Suppose f satisfies conditions (i) and (ii) above. Then for some
¢ > 0, the initial value problem (1) has a unique solution y = y(t) for |t —to| < c.

We will prove the Picard-Lindel6f Theorem by showing that the sequence Y, (t) defined by Picard
iteration is a Cauchy sequence of functions.

Set M = Maw ) ep|f(t,y)| and set

. b 1
c = min a’M’2K ,

2
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and let F be the collection of all continuous functions ¢ : [tg — ¢, to + ¢| — R defined as follows
F={¢:[to—c,to+c =R : ¢(to) = yo and [§(t) — yo| < b}

Lemma. 1. Suppose that ¢ € F. Then the function ® = T[¢] defined by

t
o) =yo+ | [(r (7)) dr

1s also in F.

Proof. We first have to prove that ® is well-defined. Set g(t) = f(¢, #(¢)). Then

2=+ [ () dr

to

If we can show that g is continuous, than it follows that the integral is well-defined. In fact, by the
Fundamental Theorem of Calculus, it follows that ® is differentiable, and therefore continuous.

Therefore, we have to show that ¢ is continous. To show this, fix ¢ in the interval I = [tg— ¢, to+c|,
and choose € > 0. Since f is continuous as a function of its first variable and ¢ is continuous, there
is a § > 0 such that the both of the following conditions are satisfied for s € I:

(i) If [s — t] < 6, then |f(s, ¢(t)) — f(E,o(1))] < €/2
(ii) If |s — t| < 0, then |¢p(s) — ¢(t)] < €¢/(2K)

Therefore, by the triangle inequality, if |s — ¢| < J, then

l9(s) = g@O)] = |7 (s,0(5)) = F(t, p(t)] = [f(5,0(5)) = [(s,0(t)) + [ (s, 0(t)) — [ (¢ (1))
< ‘f(‘g? (25(8)) - f(S, ¢<t))| + ‘f(87 (b(t)) - f(tv ¢(t)>‘
< K|p(s) — ¢(t)] + ¢/2 < Ke/(2K) +¢/2 = €.

To see that ® is in F, note that by construction ®(ty) = yo. Finally notice that [t —ty| < c < a
implies |t — tp| < a. So

|[®(1) = yol < t f(r, (7)) dr

< Mt —to] < Mc < M(b/M) =b

O

In light of the lemma we just proved, we may view Picard iteration as a map of the form
T:F—=F

Lemma. T satisfies the condition

IT[¢] — T[]l <1/2[¢ — I,

for all , ¢ in F, where ||B|| := max),_y,|<.|8(t)| for B: [to — c,to + ¢ — R continuous.
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Proof. Suppose that ¢ and v are functions in F, and compute as follows:

T[g](t) = T[](B)| =

t f(r,0(7)) = f(r,4(7)) dr

SK| [ o(r) —(r)dr

to

< K¢~ vlle
1
< Kypllé— vl =1/216 - vl

O

The Picard-Lindel6f Theorem follows from above lemma and Theorem 3 of the handout “Cauchy
Sequences of Functions”.



