
Math 135A, Winter 2014 Picard Iteration

We begin our study of Ordinary Differential Equations by considering the the problem of existence
and uniqueness of solutions of the initial value problem

y′ = f(t, y) , y(t0) = y0 . (1)

Suppose that y = Y (t) is a solution defined for t near t0. Then integrating both sides of (1) with
respect to t gives

Y (t)− Y (t0) =

∫ t

t0

f(τ, Y (τ)) dτ

which we can rewrite in the form

Y (t) = y0 +

∫ t

t0

f(τ, Y (τ)) dτ (2)

Notice that differentiating both sides of (2) with respect to t yields Equation (1). So Equation (2)
is equivalent to the initial value problem (1).

Picard Iteration. Under certain conditions on f (to be discussed below), the solution of (2) is
the limit of a Cauchy Sequence of functions:

Y (t) = lim
n→∞

Yn(t)

where Y0(t) = y0 the constant function and

Yn+1(t) = y0 +

∫ t

t0

f(τ, Yn(τ)) dτ (3)

Example. Consider the initial value problem y′ = y, y(0) = 1, whose solution is y = et (using
techniques we learned last quarter).

Substituting f(t, y) = y, t0 = 0, and y0 = 1 into (3) gives:

Y1(t) = 1 +

∫ t

0
1 dτ = 1 + t

Y2(t) = 1 +

∫ t

0
(1 + τ) dτ = 1 + t+ t2/2

Y3(t) = 1 +

∫ t

0
(1 + τ + τ2/2) dτ = 1 + t+ t2/2 + t3/6 .

More generally, using Mathematical Induction, one can show that

Yn(t) =

n∑
k=0

tk

k!
.

Consequently,

lim
n→∞

Yn(t) =
∞∑
k=0

tk

k!
= et .
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Conditions on the function f(t, y). The initial value problem (1) does not always have a unique
solution, for consider the initial value problem

dy

dt
= f(y) , y(0) = 0

where f(y) =

{
0 for y ≤ 0
√

2y for y ≥ 0.
. Now for any a > 0, consider the function φa : R→ R defined as

follows

φa(t) =

{
(t− a)2/2 for t ≥ a
0 for t ≤ a .

By construction, φa satisfies the initial condition φa(0) = 0. It also satisfies the differential equation

φ′a(t) = f(φa(t)) for all t ;

This is clear since
φ′a(t) = 0 = f(0) = f(φa(t)) for t ≤ a ;

and
d(t− a)2/2

dt
= (t− a) =

√
2(t− a)2/2 = f((t− a)2/2) for t ≥ a .

This example shows that we need to impose conditions on f if we want to ensure that (1) has a
unique solution. Suppose that f satisfies the following condition:

Let R be the rectangular region

R = {(t, y) : |t− t0| ≤ a and |y − y0| ≤ b} , for a, b > 0 .

Then

(i) The function f(t, y) is continuous as a function of t for all for all (t, y) ∈ R

(ii) There is a constant K > 0 such that f satisfies the inequality

|f(t, y)− f(t, z)| ≤ K |y − z|

for all (t, y) and (t, z) in R.

A function satisfying (ii) is said to be Lipschitz continuous with respect to y on R.

Theorem (Picard-Lindelöf). Suppose f satisfies conditions (i) and (ii) above. Then for some
c > 0, the initial value problem (1) has a unique solution y = y(t) for |t− t0| < c.

We will prove the Picard-Lindelöf Theorem by showing that the sequence Yn(t) defined by Picard
iteration is a Cauchy sequence of functions.

Set M = Max(t,y)∈R|f(t, y)| and set

c = min

(
a,

b

M
,

1

2K

)
,
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and let F be the collection of all continuous functions φ : [t0 − c, t0 + c]→ R defined as follows

F = {φ : [t0 − c, t0 + c]→ R : φ(t0) = y0 and |φ(t)− y0| ≤ b}

Lemma.1. Suppose that φ ∈ F . Then the function Φ = T [φ] defined by

Φ(t) = y0 +

∫ t

t0

f(τ, φ(τ)) dτ

is also in F .

Proof. We first have to prove that Φ is well-defined. Set g(t) = f(t, φ(t)). Then

Φ(t) = y0 +

∫ t

t0

g(τ) dτ

If we can show that g is continuous, than it follows that the integral is well-defined. In fact, by the
Fundamental Theorem of Calculus, it follows that Φ is differentiable, and therefore continuous.

Therefore, we have to show that g is continous. To show this, fix t in the interval I = [t0− c, t0 + c],
and choose ε > 0. Since f is continuous as a function of its first variable and φ is continuous, there
is a δ > 0 such that the both of the following conditions are satisfied for s ∈ I:

(i) If |s− t| < δ, then |f(s, φ(t))− f(t, φ(t))| < ε/2

(ii) If |s− t| < δ, then |φ(s)− φ(t)| < ε/(2K)

Therefore, by the triangle inequality, if |s− t| < δ, then

|g(s)− g(t)| = |f(s, φ(s))− f(t, φ(t)| = |f(s, φ(s))− f(s, φ(t)) + f(s, φ(t))− f(t, φ(t))|
≤ |f(s, φ(s))− f(s, φ(t))|+ |f(s, φ(t))− f(t, φ(t))|
≤ K|φ(s)− φ(t)|+ ε/2 < Kε/(2K) + ε/2 = ε .

To see that Φ is in F , note that by construction Φ(t0) = y0. Finally notice that |t − t0| ≤ c ≤ a
implies |t− t0| ≤ a. So

|Φ(t)− y0| ≤
∣∣∣∣∫ t

t0

f(τ, φ(τ)) dτ

∣∣∣∣
≤M |t− t0| ≤Mc ≤M(b/M) = b

�

In light of the lemma we just proved, we may view Picard iteration as a map of the form

T : F → F

Lemma. T satisfies the condition

‖T [φ]− T [ψ]‖ ≤ 1/2‖φ− ψ‖,

for all φ, ψ in F , where ‖β‖ := max|t−t0|<c |β(t)| for β : [t0 − c, t0 + c→ R continuous.
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Proof. Suppose that φ and ψ are functions in F , and compute as follows:

|T [φ](t) = T [ψ](t)| =
∣∣∣∣∫ t

t0

f(τ, φ(τ))− f(τ, ψ(τ)) dτ

∣∣∣∣
≤ K

∣∣∣∣∫ t

t0

φ(τ)− ψ(τ) dτ

∣∣∣∣
≤ K‖φ− ψ‖c

≤ K 1

2K
‖φ− ψ‖ = 1/2‖φ− ψ‖

�

The Picard-Lindelöf Theorem follows from above lemma and Theorem 3 of the handout “Cauchy
Sequences of Functions”.
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