Math 135, Winter 2015, Homework 1

For practice - do not hand in

- 1. Section 11.2, Problems 7, 17, 30, 35, 47, 55, 61.
- 2. Section 11.3, Problems 9, 17, 25 (cite the theorems you use in your steps), 47, 63.
- 3. Let

$$a_1 = \frac{3}{2}, \qquad a_{n+1} = \frac{a_n^2 + 2}{2a_n}$$

Prove that the sequence is bounded below by $\sqrt{2}$ and that it is decreasing. By Theorem 11.3.6 it converges. Find the limit.

4. General formula for a simple linear recursion.

Let

$$a_1 = a, \qquad a_{n+1} = \alpha a_n + \beta$$

Determine the conditions under which a limit exists and find the limit in two different ways:

- (a) Guess and check (by induction) an explicit formula for a_n . Take the limit. There may be some conditions on α and β to guarantee a limit.
- (b) Use the theorem from Fixed Points handout.

To hand in

- 1. Problem 52 in Section 11.3.
- 2. Read the proof of the first part of Theorem 11.3.6 and prove the second part.
- 3. Suppose that f is a differentiable function on $(0,\infty)$ such that $f'(x) \to 0$ as $x \to \infty$. Show that

$$\lim_{n \to \infty} \left(f(n+1) - f(n) \right) = 0.$$

For instance, $\sqrt{n+1} - \sqrt{n} \to 0$ as $n \to \infty$ even though $\sqrt{n} \to \infty$ as $n \to \infty$. **Hint:** Use the Mean Value Theorem.