Math 135, Winter 2015, Homework 2

For practice - do not hand in

Section 11.6, Problems 13, 19, 38, 58.
Section 11.7, Problems 13, 21, 23, 60.
Section 12.1, Problem 23.
Section 12.2, Problems 12(a), 15, 28, 29, 31, 35, 36.
Section 12.3, Problems 56, 15, 19, 33, 35.

To hand in

1. Problem 69 in Section 11.7.
2. Find the Laplace transform of $f(x)=x^{n}$ where n is a positive integer. See Problem 62 in Section 11.7.
3. Problem 28 in Chapter 11 Review Exercises.
4. Problem 42 in Section 12.2.
5. (a) Show that $\int_{2}^{\infty} \frac{d x}{x(\ln (x))^{p}}$ converges if and only if $p>1$.
(b) Show that $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}$ converges and that its sum equals 2.1 to one decimal place (i.e. with an error less than 0.05).
(c) Show that $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)}$ diverges, but that

$$
8.10 \leq \sum_{k=2}^{10^{1000}} \frac{1}{k(\ln k)} \leq 8.83
$$

as you can see, this series diverges very slowly! If you tried to detect the divergence experimentally by adding a few million terms on the computer, you would not succeed.

