Math 135, Winter 2015, Homework 3

For practice - do not hand in

1. Section 12.4, Problems 6, 7, 8, 21, 31, 37, 39.
2. Section 12.5, Problems 4, 18, 19, 36, 45.
3. Use induction to prove Taylor's Theorem. The case $n=1$ is Problem 78 in Section 8.2 which was a homework problem last quarter.
4. Section 12.6, Problems 9, 14, 29, 45, 50.
5. Section 12.7, Problems 9, 14 17, 21, 32.
6. If we are estimating $\ln (x)$ with the 5th Taylor polynomial near 1 and we need the error to be less than 5×10^{-8}, what is the largest set of possible values for x ?

To hand in

1. Problem 42 in 12.4.
2. This problem proves a generalization of the Mean Value Theorem (part (c) below). As a corollary, you can show that the Cauchy Formula for the Remainder is a consequence of the Lagrange Formula.
(a) Problem 45 in Section 4.1.
(b) Use Cauchy's Mean Value Formula from part (a) to prove that if f and g are continuous on $[a, b]$, then

$$
g(c) \int_{a}^{b} f(t) d t=f(c) \int_{a}^{b} g(t) d t
$$

for some c in (a, b).
(c) Prove that if ϕ and h are continuous on $[a, b]$ and $h(t) \neq 0$ for any t in (a, b) then

$$
\int_{a}^{b} \phi(t) h(t) d t=\phi(c) \int_{a}^{b} h(t) d t
$$

for some c in (a, b).
(d) Prove that the remainder $\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-a)^{n} d t$ in Taylor's Theorem equals $\frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$ for some c between a and x.
(e) Show that

$$
\frac{1}{10 \sqrt{2}}<\int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x<\frac{1}{10}
$$

3. Problem 66 in Section 12.6. There is a typo: $s_{q}=\sum_{k=0}^{q} \frac{1}{k!}$.
4. The decreasing condition in the Alternating Series Test (due to Leibniz) is important. Try to find an example where $\lim _{n \rightarrow \infty} a_{n}=0, a_{n} \geq 0$ but the alternating series $\sum(-1)^{k} a_{k}$ diverges. (Problem 42 in 12.5)
