Math 135, Winter 2015, Homework 4

For practice - do not hand in

1. Section 12.8, Problems 1, 9, 21, 25, 31, 37, 41, 45.
2. Section 12.9, Problems 1, 5, 9, 25, 29, 35, 43, 50.
3. Find the 5 th degree Taylor Polynomial for the following functions:
(a) $\left(x^{3}+1\right) e^{2 x}$.
(b) $\sin \left(x+x^{2}\right)$.
(c) $\cos \left(e^{x}-1\right)$.
4. Section 10.2, Problems 5, 15, 23, 40, 41, 42, 57, 61.
5. Section 10.3, Problems 19, 23, 32, 42.
6. Complex Notes All the exercise in the notes.

To hand in

1. Show that $\sum_{k=0}^{\infty} \frac{\sin k}{2^{k}}$ converges. Evaluate it using the fact that $\sin k=\operatorname{Im}\left(e^{i k}\right)$.
2. Prove by inducton on $k \geq 0$ that $\frac{1}{(1-x)^{k+1}}=\sum_{n=0}^{\infty}\binom{n+k}{k} x^{n}$ when $|x|<1$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
3. Find all 4 (complex) roots of the equation $z^{4}+z^{2}+1=0$.
4. Let z and w be complex numbers.
(a) Prove that $|z+w| \leq|z|+|w|$. This is the triange inequality. Draw a picture of a triangle with sides given by the inequality.
(b) Prove that $|z+w|^{2}+|z-w|^{2}=2\left(|z|^{2}+|w|^{2}\right)$.
5. Compute the limit

$$
\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{2} \sin \left(x^{2}\right)}
$$

using Taylor expansions.

