Math 135, Winter 2015, Homework 5

For practice - do not hand in

1. Solve the following first order differential equations. Check you answers by plugging the solution back into the DE.
(a) $y^{\prime}=x-4 x y$
(b) $y^{\prime}=\csc x+y \cot x$
(c) $x^{2} y^{\prime}+2 x y=8 x^{3}$
(d) $y^{\prime}=x e^{y-x^{2}}, y(0)=0$.
(e) $(x y+x) d x=\left(x^{2} y^{2}+x^{2}+y^{2}+1\right) d y$
2. The equation $y^{\prime}+P(x) y=Q(x) y^{n}$ is called the Bernoulli equation. It becomes a linear equation after the change of variable $y^{-n+1}=z$. Solve the equation $y\left(6 y^{2}-x-1\right) d x+2 x d y=0$ using this idea.
3. From TP, page 726, Problems 3, 5, 7, 9

To hand in

1. Let $I=[0,1]$ and $Y_{n}(t)=t^{n}$. Show that the sequence $\left(Y_{n}\right)$ is not Cauchy by computing $\left\|t^{n}-t^{m}\right\|$.
2. Let $I=[-\pi, \pi]$, and consider the function $f_{0}: I \rightarrow \mathbf{R}$ defined by $f_{0}(t)=e^{t}$. Let $f_{n}, n=0,1,2, \ldots$ be the sequence of functions on I defined inductively by the formula

$$
f_{n+1}(t)=\cos (t)+\frac{1}{2} \sin (t) f_{n}(t)
$$

So $f_{1}(t)=\cos (t)+\frac{1}{2} \sin (t) e^{t}, f_{2}(t)=\cos (t)+\frac{1}{2} \sin (t)\left(\cos (t)+\frac{1}{2} e^{t} \sin (t)\right)$, etc.
Show that f_{n} converges uniformly to a continuous function and find the limit $\lim _{n \rightarrow \infty} f_{n}$.

