Math 135, Winter 2015, Homework 7

For practice - do not hand in

1. From TP, page 311, problems 12-23.
2. Prove Theorem 1 form lecture and deduce Example 2 as a corollary.
3. Show that $f(t)=e^{t^{2}}$ is not of exponential order.
4. Compute the Laplace transforms of the following functions:
(a) $f_{1}(t)=t e^{4 t} \cos (-2 t), f_{2}(t)=\cos ^{2}(t), f_{3}(t)=\sqrt{t} e^{t}$.
(b) $f(t)=\left\{\begin{array}{lr}4, & t<2, \\ t+2, & 2 \leq t \leq 5 . \\ e^{-t}, & t>5 .\end{array}\right.$
5. Compute the inverse Laplace transforms of the following functions:
(a) $F_{1}(s)=\frac{1}{s^{2}+2 s+10}, F_{2}(s)=\frac{3 s}{s^{2}+4 s+13}, F_{3}(s)=\frac{2 s+7}{s^{2}+6 s+9}$.
(b) $F_{1}(s)=\frac{s^{2}-6}{s^{3}+4 s^{2}+3 s}, F_{2}(s)=\frac{16}{s\left(s^{2}+4\right)}, F_{3}(s)=\frac{6 s-3}{s(s+1)^{2}}$.
(c) $F(s)=\frac{\left(1-e^{-2 s}\right)\left(1-3 e^{-2 s}\right)}{s^{2}}$

To hand in

1. (a) Use

$$
\int \operatorname{Re}\left(e^{(a+b i) t}\right) d t=\operatorname{Re}\left(\int e^{(a+b i) t} d t\right)
$$

where $\operatorname{Re}(z)$ is the real part of a complex number z, to compute $\int e^{a t} \cos b t d t$.
(b) Find $\mathcal{L}\{\cos (b t)\}$.
(c) Use Theorem 3 from lecture to find $\mathcal{L}\{\sin (b t)\}$.
(d) Use Theorem 5 from lecture to find $\mathcal{L}\{t \sin (b t)\}$.
(e) Use Theorem 1 from lecture to find $\mathcal{L}\left\{e^{a t} \sin (b t)\right\}$.
(f) Compute $\mathcal{L}\left\{t e^{a t} \sin (b t)\right\}$.
2. Solve the initial value problem $y^{\prime \prime}+y=f(t), y(0)=0$ and $y^{\prime}(0)=0$ where

$$
f(t)=\left\{\begin{array}{lr}
4, & 0 \leq t \leq 2 \\
t+2, & t>2
\end{array}\right.
$$

3. Compute $\mathcal{L}\{h\}$ where

$$
h(t)=\left\{\begin{array}{lr}
t, & 0 \leq t<1 \\
h(t-1), & t \geq 1
\end{array}\right.
$$

is the sawtooth wave function.

