Final Review Problems

1. As part of my solution, I reduced the following matrix:

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & 2 \\
0 & 4 & -8 & 3 \\
2 & 3 & 0 & -1 \\
-1 & 2 & -7 & 5
\end{array}\right] \rightarrow \ldots \rightarrow\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What was the question? What was the answer?
Try to come up with as many different questions as you can think of. Reducing a matrix is the most commonly used tool in linear algebra.
2. Solve the following systems identifying the particular solution and the homogeneous solution: Problems 19, 23, 25 in Section 1.2.
3. The set of solutions to a homogeneous system is a subspace. For the following systems, find a basis for the subspace of solutions and its orthogonal complement. Sketch the solution space and its orthogonal complement showing the basis vectors. The first is in \mathbf{R}^{2}, the last two are in \mathbf{R}^{3} so they will require more artistic skills.
(a) $2 x_{1}+3 x_{2}=0$.
(b) $3 x_{1}-5 x_{2}-2 x_{3}=0$
(c) $4 x_{1}+2 x_{2}-x_{3}=0$ and $x_{1}-x_{2}+3 x_{3}=0$.
4. Consider the linear transformation $T: \mathbf{R}^{5} \rightarrow \mathbf{R}^{4}$ given by the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 1 & 0 & 1 \\
0 & 2 & 1 & 1 & 3 \\
0 & -2 & 0 & 2 & -2
\end{array}\right]
$$

Find bases for $\operatorname{Ran}(T)=\operatorname{Col}(A), \operatorname{Ker}(T)=\operatorname{Null}(A)$ and their orthogonal components. Give the dimensions of these four subspaces and say whether they are subspaces of \mathbb{R}^{5} or \mathbb{R}^{4}.
5. Compute the determinant of the matrix

$$
\left[\begin{array}{ccc}
17 & 10 & 3 \\
12 & 0 & 8 \\
18 & -36 & -27
\end{array}\right]
$$

by first using row reduction to simplify the determinant computation.
6. Compute the inverses of the following matrices: Questions 5, 11, 15 in Section 3.3. For the two by two matrices, it is faster the use the formula

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

7. Let \mathbf{v} be a vector in \mathbb{R}^{n} and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a map given by $T(\mathbf{x})=\operatorname{proj}_{\mathbf{v}} \mathbf{x}$.
(a) Let $n=3$ and $\mathbf{v}=\left[\begin{array}{ll}13 & 5\end{array}\right]^{T}$. Show that T is a linear transformation by showing it satisfies the two properties in the definition of a linear transformation. Then, find the 3×3 matrix A such that $T(\mathbf{x})=A \mathbf{x}$.
(b) Show that T (with arbitrary n and \mathbf{v}) is a linear transformation by showing it satisfies the two properties in the definition of a linear transformation. What is the range of T ? What is the kernel of T ? Look above for an example and think geometrically.
8. Let A be an $n \times n$ matrix such that $A=-A^{T}$. Show that if n is odd then $\operatorname{det} A=0$. Show by example that $\operatorname{det} A$ does not have to be 0 if n is even.
9. Let A be a 3×3 matrix with eigenvalues $\lambda_{1}=3, \lambda_{2}=-3$, and $\lambda_{3}=0$ and that

$$
\mathbf{v}_{1}=\frac{1}{3}\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\frac{1}{3}\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]
$$

are the corresponding (unit length) eigenvectors. Find A.
10. Question 5 in Section 3.2. Also, If T is a transformation given by the matrix C and S is a transformation given by the matrix E, what are the domain and codomain of the transformations T, S and $S \circ T$? Is S one-to-one or onto? What is the matrix for the transformation $S \circ T$. Can we form the composition $T \circ S$? Why or why not?
11. Questions 5, 9, 19 in Section 6.3.
12. Question 13 in Section 6.4 by giving the change of basis matrix P, its inverse P^{-1}, the diagonal matrix D and verifying the product $A=P D P^{-1}$.
13. Compute A^{10} for

$$
A=\left[\begin{array}{cc}
3 & 1 \\
-2 & 0
\end{array}\right]
$$

by first diagonalizing A.
14. Let

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Find a matrix B such that $B^{2}=A$ by diagonalizing A first.
15. Questions 9 and 11 in Section 8.5.

