Read chapters 8 and 9 of the textbook Main skills. You need to understand:

- The definition of function
- how to decide if a function is injective, surjective or bijective
- the definition of composition.
- The definition of inverse f^{-1} of a function f.

Do the following problems from your textbook:

- p. 99: 8.2
- p 113: 9.1
- p 118: 19

. Do the following additional problems.

1. Define a function $f: Z \to Z$ by:

$$f(x) = \begin{cases} n+1 & \text{if } n \text{ is even} \\ n+2 & \text{if } n \text{ is odd} \end{cases}$$

- (a) Is f injective ? Prove your answer.
- (b) Is f surjective ? Prove your answer.
- 2. Define a function $f: Z \to Z$ by f(x) = x + 5.
 - (a) Compute $f^2(x) = f(f(x))$
 - (b) Compute $f^3(x)$
 - (c) Find and prove a formula for $f^n(x)$.
- 3. Let $d: Z^+ \to Z^+$ be defined by d(x)= number of positive divisors of x. For example d(6) = 4 because 6 is divisible by 1, 2,3,and 6.
 - (a) Describe the set $S = \{x \in Z^+ | d(x) = 2\}.$
 - (b) Is d injective ?
 - (c) Make a conjecture for a formula for $d(2^n)$ (i.e write $d(2^n) =$ formula in n) for $n \ge 0$ and prove your formula .
 - (d) is d surjective ?
- 4. Give examples of functions $f A \to B$ and $g B \to C$ that satisfy the following conditions, or explain why no example exists:
 - (a) g surjective $g \circ f$ not surjective
 - (b) g injective $g \circ f$ not injective.
 - (c) f not injective $g \circ f$ injective.