Read chapters 8 and 9 of the textbook
Main skills. You need to understand:

- The definition of function
- how to decide if a function is injective, surjective or bijective
- the definition of composition.
- The definition of inverse $f^{-1}$ of a function $f$.

Do the following problems from your textbook:

- p. 99: 8.2
- p 113: 9.1
- p 118: 19
. Do the following additional problems.

1. Define a function $f: Z \rightarrow Z$ by:

$$
f(x)= \begin{cases}n+1 & \text { if } n \text { is even } \\ n+2 & \text { if } n \text { is odd }\end{cases}
$$

(a) Is $f$ injective ? Prove your answer.
(b) Is $f$ surjective? Prove your answer.
2. Define a function $f: Z \rightarrow Z$ by $f(x)=x+5$.
(a) Compute $f^{2}(x)=f(f(x))$
(b) Compute $f^{3}(x)$
(c) Find and prove a formula for $f^{n}(x)$.
3. Let $d: Z^{+} \rightarrow Z^{+}$be defined by $d(x)=$ number of positive divisors of $x$. For example $d(6)=4$ because 6 is divisible by $1,2,3$, and 6 .
(a) Describe the set $S=\left\{x \in Z^{+} \mid d(x)=2\right\}$.
(b) Is $d$ injective ?
(c) Make a conjecture for a formula for $d\left(2^{n}\right)$ (i.e write $d\left(2^{n}\right)=$ formula in $n$ ) for $n \geq 0$ and prove your formula.
(d) is $d$ surjective ?
4. Give examples of functions $f A \rightarrow B$ and $g B \rightarrow C$ that satisfy the following conditions, or explain why no example exists:
(a) $g$ surjective $g \circ f$ not surjective
(b) $g$ injective $g \circ f$ not injective.
(c) $f$ not injective $g \circ f$ injective.

