Hw 5

Read chapter 14 of the textbook.

Main skills:

• You need to be able to prove that a given infinite set is denumerable or not denumerable.

Do the following problems from your textbook:

- p. 181 14.1, 14.2 (you may assume $A \cap B = \emptyset$ for both problems).
- 14.3 (you may want to use additional problem 4).
- . Do the following additional problems.
 - 1. Prove that the set $A = \{x \in Z^+ : 7 \text{ divides } x\}$ is denumerable.
 - 2. Prove that the set $A = \{x \in Z : 7 \text{ divides } x\}$ is denumerable.
 - 3. Prove that the interval [1,3] is not denumerable.
 - 4. In a previous homework you have shown that any $n \in Z^+$ can be written in the form $n = 2^m \cdot h$, where $m \ge 0$ and h is odd.
 - a) Prove that m and h are unique, that is prove that

$$n = 2^{m_1} \cdot h_1 = 2^{m_2} \cdot h_2 \Rightarrow (m_1 = m_2) \land (h_1 = h_2)$$

This allows you to define a function $f:Z^+\to (Z^+\cup\{0\})\times ODD_{Z^+}$ with f(n)=(m,h), where $n=2^mh$.

b) Prove that f is a bijection.

c) Prove that $Z^+ \times Z^+$ is denumerable by defining a bijection $g: Z^+ \times Z^+ \to (Z^+ \cup \{0\}) \times ODD_{Z^+}$.

- 5. Let A be a denumerable set and $a \in A$. Prove that $A \{a\}$ is denumerable.
- 6. Prove that $P(Z^+)$ is not denumerable: by contradiction assume $f: Z^+ \to P(Z^+)$ is a bijection.

As an example, consider the following table

	1	2	3	4	5	• • •
f(1)	T	T	F	T	F	
f(2)	F	F	F	T	F	• • •
f(n)	F	T	T	T	T	

In each row i we have T in the column corresponding to j iff $j \in f(i)$, we have F in the column corresponding to j iff $j \notin f(i)$, so for example, if you look at the first row $1 \in f(1), 2 \in f(1), 3 \notin f(1), \cdots$.

Use a diagonalization argument similar to Cantor's argument in the proof that R is not denumerable, to find a subset S of Z^+ that is different form f(i) for all i.

Then use S to finish your proof by contradiction.