Hw 5

Read chapter 14 of the textbook.
Main skills:

- You need to be able to prove that a given infinite set is denumerable or not denumerable.

Do the following problems from your textbook:

- p. 181 14.1, 14.2 (you may assume $A \cap B=\emptyset$ for both problems).
- 14.3 (you may want to use additional problem 4).
. Do the following additional problems.

1. Prove that the set $A=\left\{x \in Z^{+}: 7\right.$ divides $\left.x\right\}$ is denumerable.
2. Prove that the set $A=\{x \in Z: 7$ divides $x\}$ is denumerable.

3 . Prove that the interval $[1,3]$ is not denumerable.
4. In a previous homework you have shown that any $n \in Z^{+}$can be written in the form $n=2^{m} \cdot h$, where $m \geq 0$ and h is odd.
a) Prove that m and h are unique, that is prove that

$$
n=2^{m_{1}} \cdot h_{1}=2^{m_{2}} \cdot h_{2} \Rightarrow\left(m_{1}=m_{2}\right) \wedge\left(h_{1}=h_{2}\right)
$$

This allows you to define a function $f: Z^{+} \rightarrow\left(Z^{+} \cup\{0\}\right) \times O D D_{Z^{+}}$with $f(n)=(m, h)$, where $n=2^{m} h$.
b) Prove that f is a bijection.
c) Prove that $Z^{+} \times Z^{+}$is denumerable by defining a bijection $\mathrm{g}: Z^{+} \times$ $Z^{+} \rightarrow\left(Z^{+} \cup\{0\}\right) \times O D D_{Z^{+}}$.
5. Let A be a denumerable set and $a \in A$. Prove that $A-\{a\}$ is denumerable.
6. Prove that $\mathrm{P}\left(Z^{+}\right)$is not denumerable: by contradiction assume $f: Z^{+} \rightarrow$ $P\left(Z^{+}\right)$is a bijection.
As an example, consider the following table

		1	2	3	4	5
\ldots						
$f(1)$		T	T	F	T	F
\ldots						
$f(2)$		F	F	F	T	F
\ldots						
\cdots						
\ldots						
$f(n)$		F	T	T	T	T
\cdots						

In each row i we have T in the column corresponding to j iff $j \in f(i)$, we have F in the column corresponding to j iff $j \notin f(i)$, so for example, if you look at the first row $1 \in f(1), 2 \in f(1), 3 \notin f(1), \cdots$.
Use a diagonalization argument similar to Cantor's argument in the proof that R is not denumerable, to find a subset S of Z^{+}that is different form $f(i)$ for all i.
Then use S to finish your proof by contradiction.

