Hw 8

Main skills. You need to know :

- how to find inverses in Z_m .
- Fermat's little theorem
- What is an equivalence relation
- How to find equivalence classes
- . Do the following problems.
 - 1. Prove that there are infinitely many prime numbers that are congruent to $3 \mod 4$.
 - 2. Compute $2^{10^6} \mod 17$
 - 3. Prove that for any integer n, $n^3 + 5n$ is divisible by 6.
 - 4. List all invertible elements in Z_{15} .
 - 5. Prove that the function $fZ_{100} \rightarrow Z_{100}$ defined as $f(r) = 3 \cdot r$ (where \cdot is multiplication in Z_{100}) is a bijection, then find the inverse of f.
 - 6. For each of the following relations R say whether R is an equivalence relation or not. If it is, describe its congruence classes.
 - (a) R on Z^+ defined by aRb iff gcd(a, b) is odd.
 - (b) R on $Z^+ \{1\}$ defined by aRb iff gcd(a, b) > 1
 - (c) R on Z defined by aRb iff a + b is even
 - (d) R on Z^+ defined by aRb iff a div b.
 - (e) Let A be the set of all polynomials in one variable x with integer coefficients. R on A defined by p(x)Rq(x) iff p(x) and q(x) have the same degree.
 - 7. Let A be the set of all functions from Z^+ to Z^+ . Let R the relation on A defined by fRg iff f(1) = g(1). Prove that R is an equivalence relation. Is the set S having as elements the equivalence classes of R countable or uncountable?
 - 8. Prove that if p is a prime greater than 3 the equation $x^2 = 4$ has exactly 2 solutions in Z_p . How many solutions does it have in Z_{12} ?