Spring 2019 Math 300 Midterm exam

Write clearly and legibly. Justify all your answers.

You will be graded for correctness and clarity of your solutions.

You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear. This exam contains 7 pages please make sure you have a complete exam.

You have 50 minutes. Good luck

NAME:____

NAME:_____

PROBLEM 1 10^{+} PROBLEM 2 10^{+} PROBLEM 3 5^{+} PROBLEM 4 10^{+} PROBLEM 5 10^{+} Total 4^{-}

• **Problem 1** Recall that the Fibonacci sequence is defined by: $u_1 = 1$ $u_2 = 1$ $u_{n+1} = u_n + u_{n-1}$ if $n + 1 \ge 3$ Prove that $\sum_{i=1}^n u_i = u_{n+2} - 1$

Proof by induction
Base case: if
$$n = I$$
 $v_1 = 1$, $v_3 - 1 = 2 - 1 = L$
No need to consider $n = 2$
In duction step: assume $\sum_{L=1}^{K} v_L = v_{K+2} - 1$ for some $K \ge 1$
 $v_{K+2} + v_{K+1} = v_{K+3}$ by Fibonarci definition
then $\sum_{L=1}^{K+1} v_L = \sum_{L=1}^{K} v_L + v_{K+1} = v_{K+2} - 1$ $\pm v_{K+1} = v_{K+3} - 1 = v_{(K+1)+2} - 2$
by induction
essumption

- **Problem 2** Let A_i be the set of all positive integers divisible by i, that is $A_i = \{n \in Z^+ | i \text{ divides } n\}.$
 - 1. Prove that $A_2 \cap A_3 = A_6$

First we'll show $A_2 \cap A_3 \subseteq A_6$: if $x \in A_2 \cap A_3$ then $x \in A_2$ so $2 \operatorname{div} x$ so x = 2h for some $h \in 2$, and $x \in A_3$ so $3 \operatorname{div} x$ so x = 3k for some $k \in 2$; since x is even and 3is odd, k must be even, so $k = 2\ell$ for some ℓ in ℓ and $x = 3 \cdot 2\ell$ so $6 \operatorname{div} x$ and $x \in A_6$ Now we'll show $A_6 \subseteq A_2 \cap A_3$: if $x \in A_6$ then $6 \operatorname{div} x$ so x = 6 m for some m in ℓ , therefore x = 2(3m) so $2 \operatorname{div} x$ and $x \in A_2$ and $x \in A_3$. Since $x \in A_3$ then $x \in A_6$. Prove that for all $k \ge 2$ the set $\bigcap_{i=2}^{k} A_i$ is infinite.

Consider
$$N \cdot k! = N \cdot (1 \cdot 2 \cdot 3 \cdot \dots \cdot k)$$
 then for any $N \in \mathbb{Z}^+$
 $N \cdot k! \in \bigwedge_{L=2}^{K} A_L$

3. Is $\bigcap_{i=2}^{\infty} A_i$ infinite ? Justify your answer.

No
$$\bigwedge_{L=2}^{\infty} A_L = \phi$$
 since for any $\eta \in \mathbb{Z}^+ \times \mathcal{A}_{n+1}$

• **Problem 3** The exclusive or $P \oplus Q$ is defined by the following table:

P	Q	$P\oplus Q$
1	1	0
1	0	1
0	1	1
0	0	0

That is $P\oplus Q$ is true exactly when one of P or Q is True and the other is False.

Write a statement equivalent to $P \oplus Q$ that only uses P, Q and the connectives \neg, \lor . No justification necessary.

 $P \oplus Q$ equiv (PATQ) V (TPAQ) equiv $T(TPVQ) \vee T(PVTQ)$

or

 $P \bigoplus Q equiv (PVQ) \land 7(P\land Q) equiv (PVQ) \land (7PV7Q)$ equiv 7 (7(PVQ) V 7(7PV7Q))

• Problem 4

Define a function $f:\mathbf{Z}\to\mathbf{Z}$ by:

$$f(x) = \begin{cases} x+2 & \text{if } x \ge 0\\ x+5 & \text{if } x < 0 \end{cases}$$

1. Is f injective ? (Give a proof).

$$N_0 = f(0) = f(-3)$$

2. Is f surjective? (Give a proof). yes given y e Z ig y zz take x = y-e then x zo and f(x) = x + z = y ig y < 2 take x = y-s then x <0 and f(x) = x + J = y • **Problem 5** For each statement below circle if it is true or false and give a proof. $EVEN^+$ is the set of even positive integers.

1. $\forall y \in EVEN^+ \exists x \in Z \quad y = \frac{x^2}{2}$ TRUE FALSE

Take y = 4 then there is no x s.t $4 = \frac{x^2}{z}$ since this is equivalent to $8 = x^2$ and if $x = \pm 1$ $x^2 = 1$ if $x = \pm 2$ $x^2 = 4$ if $x \ge 3$ or $x \le -3$ $x^2 \ge 9$ So there is no x in z^2 with $x^2 = 8$

2. $\forall x \in EVEN^+ \exists y \in Z \quad y = \frac{x^2}{2}$ (TRUE) FALSE

Given x in $EVEN^{\dagger}$, since is even then x = 2k for some k in zand therefore $\frac{x^2}{z} = \frac{4k^2}{z} = 2k^2$ is in z^2 so we can take $y = \frac{x^2}{z}$

3.
$$\exists x \in Z \forall y \in Z \ y+x>3$$
 TRUE (FALSE)
Given x take $y = -x$ then $y+x = 0$ which is
less than 3