SPRING 2018 MATH 300 B FINAL EXAM

Write clearly and legibly. Justify all your answers.
You will be graded for correctness and clarity of your solutions.
You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear.
This exam contains 8 pages, please make sure you have a complete exam. You have 1 hr and 50 minutes. Good luck

NAME: \qquad

PROBLEM 1 \qquad
PROBLEM 2 \qquad

PROBLEM 3 \qquad
PROBLEM 4 \qquad
PROBLEM 5 \qquad

PROBLEM 6 \qquad

PROBLEM 7 \qquad

Total \qquad

- Problem 1 Given sets A, B, prove that $(A-(A-B)) \subseteq B$. Give an example to show that equality does not have to hold.

Assume $x \in A-(A-B)$ then $x \in A$ and
$x \notin A-B ; \quad x \notin A-B$ if either $x \notin A$, and this is not the case or $x \in B$; so x must be in B.

if $A=\{1\}$ and $B=\{1,2\} \quad A-B=\varnothing \quad A-(A-B)=\{1\}$
so $A-(A-B) \neq B$
so $A \cap B \neq B$

- Problem 2 Write a statement equivalent to the negation of

$$
\exists x \in A \forall y \in B(x \leq y) \Rightarrow(\exists z \in C((z>x) \Rightarrow(z>y \wedge z=y)))
$$

that does not use the negation symbol \neg. You are allowed to use \neq.

$$
\forall x \in A \exists y \in B \quad x \leqslant y \wedge \quad \forall z \in \subset x>y \wedge(z \leqslant y \vee z \neq y))
$$

- Problem 3 Prove that the sum of two odd perfect squares is never a perfect square. A perfect square is an integer z such that $z=k^{2}$ for some integer k.

$$
\begin{aligned}
& \text { Assume } x=e^{2} \text { and } y=b^{2} \text { are two odd perfect squares } \\
& a \text { and } b \text { have to be odd es well. Let } Q=2 k+1 \text { end } \\
& b=2 h+1 \text { for some } b, k \text { in } z \text {. Then } x+y=e^{2}+b^{2}= \\
& (2 k+1)^{2}+(2 h+1)^{2}=4\left(k^{2}+h^{2}+k+h\right)+2 \text { is congruent to } 2 \bmod c_{1} \\
& \text { We shell show that no perfect square is congruent to } 2 \text { mod } \\
& 4_{1} \text {, therefore } x+y \text { is not a perfect sphere: } \\
& \text { Let } z=m^{2} \text { a perfect square: } m \text { cen be congruent to } 0,1,2,3 \\
& \bmod 4 \text {, and } m^{2} \text { is then congruent to } 0^{2}=0,1^{2}=1,2^{2} \equiv 0,3^{2}=1 \\
& \bmod 4 \\
& \text { so } \mathrm{m}^{2} \text { is never congruent to } 2 \bmod 4
\end{aligned}
$$

$$
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 5 & 3 & 4 & 8
\end{array}
$$

- Problem 4 Define a function $f: Z \rightarrow Z$ by:

$$
f(x)= \begin{cases}x+2 & \text { if } 3 \text { divides } x \\ x-1 & \text { otherwise }\end{cases}
$$

1. Is f injective ? (Give a proof).
yes: if $x_{1} \neq x_{2}$ and both x_{1} and x_{2} are divisible by 3 , then cheerly $x_{1}+2 \neq x_{2}+2$; if neither x_{1} and x_{2} are divisible by 3 , then cheerly $x_{1}-1 \neq x_{2}-1$; if one of them, say x_{1} is divisible by 3 and x_{2} is not then x_{2} is congruent to 1 or $2 \bmod 3$ and $x_{2}-1$ is congruent to 0 or 1 , while $x_{1}+2$ is congruent to 2 $\bmod 3$ therefore $x_{2}-1 \neq x_{1}+2$
2. Is f surjective? (Give a proof).
yer is $y \equiv 2 \bmod 3$ take $x=y-2$ then $3 \operatorname{div} x$ and $f(x)=x+2=y$
yes if $y \equiv 2 \bmod 3$ take $x=y+1$ then 3 does not duidex and $\delta(f)=x-1=y$ if $y \equiv 0 \bmod 3$ take $x=y+1$ then 3 does not divided and $f(x)=x-1=y$
3. Prove that $\forall n \in Z^{+} \forall m \in Z f^{3 n}(m)=m$ [here $f^{n}(x)$ means...]]

Induction step: assume $f^{3 k}(x)=x$ then $f^{3(k+1)}(x)=$

$$
=f^{3 k+3}(x)=f^{3 k}\left(f^{3}(x)\right)=f^{3 x}(x)=x
$$

$$
\begin{aligned}
& \text { If } n=1 \quad \text { if } x \equiv 0 \bmod 3 \quad \begin{array}{ll}
& f^{3}(x)=f(f(x+2))=f(x+1)=x \\
& \text { if } x \equiv 1 \bmod 3
\end{array} \quad f^{3}(x)=f(f(x-1))=f(x+1)=x \\
& \text { if } x \equiv 2 \bmod 3 \quad f^{3}(x)=f(f(x-1))=f(x-2)=x \\
& \text { (since now } 3 \text { divides } x-2 \text {) }
\end{aligned}
$$

- Problem 5 Find all integer solutions of $3 \cdot 7^{1022} x \equiv 25 \bmod 31$

$$
\begin{aligned}
& 31 \text { is prime so } 7^{30} \equiv 1 \quad \bmod 31 \quad 1022=30 \times 34+2 \\
& 3 \cdot 7^{2}\left(7^{30}\right)^{34} \equiv 25 \bmod 31 \\
& 3 \cdot 49 x \equiv 25 \bmod 31 \\
& 147 x \equiv 25 \bmod 31 \quad 1=31 \cdot 3+(147-31 \cdot 4)(-4)=147(-4)+31(19) \\
& 147=31 \times 4+23 \quad 1=23(-1)+(31-23) 3=31 \cdot 3+23(-4) \\
& \begin{array}{ll}
31=23 \times 1+8 \\
3 & =8 \times 2+7
\end{array} \quad 1=8-(23-8 \times 1)=23(-1)+8 \times 3 \\
& \begin{aligned}
23 & =8 \times 2+7+1 \\
1 & =7 \times 1+1 \\
7 & =1 \times 7+0
\end{aligned} \\
& \text { so } 25=147(-100)+31 \cdot(19 \cdot 25) \\
& \text { so }
\end{aligned}
$$

- Problem 6 Show that the relation r defined on R, the set of real numbers by $x r y$ iff $x-y \in Z$ is an equivalence relation.

1) $\forall x \in Z \quad x-x=0 \in Z \quad$ so $x+x$
<) $\forall x, y \in z \quad x-y \in z \Rightarrow \quad y-x=-(x-y) \in z \quad$ so $x r y \Rightarrow y r x$
2) $\forall x, y, z \in z \quad x-y \in z \wedge y-z \in z \Rightarrow(x-y)+(y-z)=x-z \in z$

$$
\text { so } x r y \wedge y r z=7 x+z
$$

- Problem 7 Prove that if A and B are denumerable sets, then their cartesian product $A \times B$ is denumerable. You can assume ...

Let $f z^{+}-O A$ and $j z^{+}-0 B$ be bijection
Then $h z^{+} \times z^{+}-\infty \quad A \times B$
$(x, y)-0(f(x) \rho(x))$
is
a bijection since $\begin{aligned} & k(x)=A \times \beta-0 Z^{+} x Z^{\dagger} \\ & k(a, b)=\left(J^{-1}(a), \rho^{-1}(b)\right)\end{aligned}$
is such that $h(k(a, b))=h\left(f^{-1}(0), J^{-1}(\Delta)=(a, b)\right.$
and $\quad k(h(x, y))=k(f(x), g(y))=(x, y)$

So
$k=h^{-1}$ and h is a bijection

