SPRING 2018 MATH 300 B FINAL EXAM

 $\label{thm:weight} \textit{Write clearly and legibly. Justify all your answers.}$

You will be graded for correctness and clarity of your solutions.

You may use one 8.5×11 sheet of notes; writing is allowed on both sides. You may use a calculator.

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

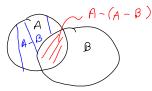
Please raise your hand and ask a question if anything is not clear.

This exam contains 8 pages, please make sure you have a complete exam. You have 1 hr and 50 minutes. Good luck

NAME:
PROBLEM 1
PROBLEM 2
PROBLEM 3
PROBLEM 4
PROBLEM 5
PROBLEM 6
PROBLEM 7
Total

• **Problem 1** Given sets A, B, prove that $(A - (A - B)) \subseteq B$. Give an example to show that equality does not have to hold.

Assume $x \in A-(A-B)$ then $x \in A$ and $x \notin A-B$; $x \notin A-B$ if either $x \notin A$, and this is not the case or $x \in B$; so $x \in A$ in B.



so ANB+B

if
$$A = 419$$
 and $B = 41,29$ $A - B = \emptyset$ $A - (A-B) = 419$
so $A - (A-B) \neq B$

• Problem 2 Write a statement equivalent to the negation of

$$\exists x \in A \, \forall y \in B \, (x \leq y) \Rightarrow (\exists z \in C \, ((z > x) \Rightarrow (z > y \wedge z = y)))$$

that does not use the negation symbol \neg . You are allowed to use \neq .

• Problem 3 Prove that the sum of two odd perfect squares is never a perfect square. A perfect square is an integer z such that $z=k^2$ for some integer k.

Assume $x=e^2$ and $y=b^2$ are two odd perfect squeres a and b here to be odd as well. Let e=2k+1 and e=2k+1 for some b, k in 2. Then e=2k+1 and e=2k+1 for some b, k in 2. Then e=2k+1 for e=2k+1 for some b, k in 2. Then e=2k+1 for e=2k+1 for some b, k in 2. Then e=2k+1 for e=2k+1 fo

• **Problem 4** Define a function $f: Z \to Z$ by:

$$f(x) = \begin{cases} x+2 & \text{if 3 divides } x \\ x-1 & \text{otherwise} \end{cases}$$

1. Is f injective? (Give a proof).

yes: if x, # x2 and both x, and x2 are divisible by 3, then cleerly x1+2 # x2+2; if neither x1 and x2 are divisible by 3, then cleerly x1-1 # x2-1; if one of them, sey x1 is divisible by 3 and x2 is not then x2 is congruent to 1 or 2 mod 3 and x2-1 is congruent to 0 or 1, while x,+2 is congruent to 2 mod 3 therefore x2-1 + x, +2

If $y = 2 \mod 3$ teke x = y - 2 then $3 \dim x$ and $3 \dim x = y + 2 = y$ if $y = 1 \mod 3$ teke x = y + 1 then $3 \dim x$ and $3 \dim x = y + 1 = y$ g=0 mod3 take x=y+1 then 3 does not dividet and f(x)=x-1= 4

3. Prove that
$$\forall n \in Z^+ \forall m \in Zf^{3n}(m) = m$$
 [here $f^n(x)$ means...]

if $x \equiv 0 \mod 3$ $f^3(x) = f(f(x+z)) = f(x+1) = x$

if $x \equiv 1 \mod 3$ $f^3(x) = f(f(x-1)) = f(x+1) = x$

if $x \equiv 2 \mod 3$ $f^3(x) = f(f(x-1)) = f(x-2) = x$

(since now 3 divides $x-2$)

Induction step: assume
$$f^{3k}(x) = x$$
 then $f^{3(k+1)}(x) = x$

$$= f^{3k+3}(x) = f^{3k}(f^{3}(x)) = f^{3k}(n) = x$$

31 is prime so
$$\frac{1}{3}$$
 = 1 mod 3) 1022 = 30×34+2
3. $\frac{1}{4}^2 (\frac{1}{4}^{30})^{34}$ = 25 mod 31
3. $49x = 25$ mod 31
14 $\frac{1}{4} \times \frac{1}{2} = 25$ mod 31
14 $\frac{1}{4} \times \frac{1}{2} = 25$ mod 31
14 $\frac{1}{4} \times \frac{1}{4} = 25$ mod 31
15 $\frac{1}{4} \times \frac{1}{4} = 25$ mod 31
16 $\frac{1}{4} \times \frac{1}{4} = 25$ mod 31
17 $\frac{1}{4} \times \frac{1}{4} = 25$ mod 31
18 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
19 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
10 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
10 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
12 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
13 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
14 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
15 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
16 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
17 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
18 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
19 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
10 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
12 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
13 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
14 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
15 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
16 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
17 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
18 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
19 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
19 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
10 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
11 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
12 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
13 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
14 $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = 25$ mod 31
15 \frac

- **Problem 6** Show that the relation r defined on R, the set of real numbers by xry iff $x-y\in Z$ is an equivalence relation.

- 1) $\forall x \in \mathcal{Z}$ $x-x=0 \in \mathcal{Z}$ $50 \times r \times r$ 2) $\forall x, y \in \mathcal{Z}$ $x-y \in \mathcal{Z}$ $y-x=-(x-y) \in \mathcal{Z}$ $50 \times r y = 7 y r \times r$ 3) $\forall x, y, z \in \mathcal{Z}$ $x-y \in \mathcal{Z}$ $x-y \in \mathcal{Z}$ $y-z \in \mathcal{Z} = 7 \times r \times r$ $50 \times r y \wedge y r \in \mathcal{Z}$ $x-x \in \mathcal{Z}$

• Problem 7 Prove that if A and B are denumerable sets, then their cartesian product $A \times B$ is denumerable. You can assume

Let
$$f \ 2^+ - \circ A$$
 and $g \ 2^+ - \circ B$ be bijections
Then $h \ 2^+ \times 2^+ - \circ A \times B$
 $(\times, \vee) - \circ (f(x) \ g(x))$

is a bijection since
$$k(x) = A \times B - b = (5^{-1}(a), 5^{-1}(b))$$

is such that
$$h(k(0,b)) = h(f^{-1}(0), f^{-1}(0)) = (0,b)$$

and $k(h(x,y)) = k(f(x), g(y)) = (x, y)$
so $k = h^{-1}$ and h is a bijection