ERRATA to "FOURIER ANALYSIS AND ITS APPLICATIONS"

(4th and later printings by Brooks/Cole and all printings by the American Mathematical Society)

G. B. Folland

Last updated May 28, 2020

Additional corrections will be gratefully received at folland@math.washington.edu .

Page 13: On the line before (1.20), insert "for $A \neq 0$ " after "and". Immediately after (1.20), insert "For A = 0 the solution is $X(x) = C_1 + C_2 x$."

Page 28, item 14: $\sum_{1}^{\infty} \rightarrow \frac{2}{\pi} \sum_{1}^{\infty}$

Page 31, bottom: Insert the following material that somehow got deleted: "shall present some variations of this result under other conditions on f. We first define the class of functions with which we shall be working."

Page 33, line -3: $\int_{-\pi+\theta}^{\pi+\theta} \rightarrow \int_{-\pi-\theta}^{\pi-\theta}$ Page 36, line -4: taking taking \rightarrow taking Page 40, line 10: entry 4 \rightarrow entry 6 Page 44, line 5: extiensions \rightarrow extensions Page 58, line 2: $\int_{-\pi}^{\pi} \rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi}$ Page 61, Exercise 1a: $(2.10) \rightarrow (2.12)$ Page 61, Exercise 1b: $(2.12) \rightarrow (2.14)$ Page 65, formula (3.9): $|a_n||^2 \rightarrow ||a_n||^2$ Page 71, line 7: \sum_{0}^{∞} on the left side should be \sum_{1}^{∞} . Page 76, line 3 of proof of Lemma 3.2: $\sum_{m}^{n} \rightarrow \sum_{M}^{N}$ (two places, to avoid conflict with use of n as index of summation) Page 78, line -9 (a 2-line display): $|\tilde{c}_n - c_n|^2 \rightarrow 2\pi |\tilde{c}_n - c_n|^2$ (two places) Page 79, next-to-last line of text: $\int_a^b \rightarrow \int_{-\pi}^{\pi}$ Page 90, last line of Theorem 3.10: $\langle f, \phi_n \rangle \longrightarrow \langle f, \phi_n \rangle_w$ Page 90, line $-8: \langle f_1, \tilde{f}_2 \rangle \rightarrow \langle f_1, \tilde{f}_2 \rangle_w$ Page 95, line 4: $f'(a) - \alpha f(a) = f'(b) - \beta f(b) = 0 \quad \rightarrow \quad f'(a) + \alpha f(a) = f'(b) + \beta f(b) = 0$ Page 98, line 1: §4.3 \rightarrow §4.4 Page 100, formula (4.8): When L is 2nd order in t so that $h = (h_1, h_2), u_0$ is really $(u_0, 0)$. Page 111, line -2: $(4.22) \rightarrow (4.24)$ Page 114, Exercise 8a, line 2: $(2.24) \rightarrow (2.27)$ Page 117, line $-5: b \rightarrow -b$

Page 152, lines 10, 14, and 15: $\pi c \rightarrow c$ (several places) Page 152, line 12: 5.3 \rightarrow 5.2Page 151, line 5: §4.4 \rightarrow §4.5 Page 157, Exercise 4: The differential equation should contain the term u_{zz} (although the requested solutions are independent of z). Page 162, line $-10: \S4.2 \rightarrow$ §4.3 Page 163, line 4: $l/2c \rightarrow \pi c/l$ Page 176, formula (6.21): $+m^2y \rightarrow -m^2y$ $x \rightarrow s$ and Page 186, line 11: $e^{-2xz-z^2} \rightarrow e^{2xz-z^2}$ Page 179, formula (6.26): $P_n^{|m|}(\phi) \rightarrow P_n^{|m|}(\cos \phi)$ Page 190, lines -8 and -7: Delete "it defines a polynomial of degree n only when α is not a negative integer, and". Page 190 line $-1: k+1-\alpha \rightarrow k+1+\alpha$ Page 193, line -3: definition \rightarrow definition Page 197, line $-12: -n^2y \rightarrow +n^2y$ Page 197, line $-7: e^{in\theta} z^n \rightarrow e^{in\theta} z^{|n|}$ Page 205, line 0: Delete the incorrect page header. Page 206, line 3 of (v): $\S8.1 \rightarrow \S8.2$ Page 213, Exercise 6: defining $f_{t+s} \rightarrow \text{defining } f_t * f_s$ Page 214, line -2: $i(d/d\xi)e^{-i\xi} \rightarrow i(d/d\xi)e^{-i\xi x}$ Page 216, next-to-last displayed formula: $\operatorname{Res}_{z=i} \rightarrow \operatorname{Res}_{z=ia}$ Page 220, formula (7.18): The dy is missing from the first integral. Page 221, line 7: $\frac{1}{2i} \rightarrow -\frac{1}{2i}$ Page 222, line 1: 2.7 of $\S2.4 \rightarrow 3.6$ of $\S3.4$ Page 224, Exercise 7, line 3: Theorem 2.3 \rightarrow Theorem 2.5 Page 230, line 4: $2\pi t \rightarrow \pi t$ Page 233, last displayed formula: $\Delta_0 \widehat{f} \rightarrow \Delta_0 \widehat{F}$ Page 235, Exercise 7, last line: $e^{-i(b-a)t/2} \rightarrow e^{-i(a+b)t/2}$ Page 236, line 2 of Exercise 10: $f' + cf = 0 \rightarrow f'(x) + cxf(x) = 0$ Page 239, line $-5: e^{\xi^2 kt} \rightarrow e^{-\xi^2 kt}$ Page 242, line -1: $\lim_{\delta \to 0} \to \lim_{\epsilon \to 0}$ Page 250, line $-3: e^{2\pi i m} \rightarrow e^{2\pi i n}$ Page 250, line $-2: \hat{a}_n \rightarrow \hat{a}_m$ Page 251, display after (7.40): $n > k \rightarrow n < k$ $\rightarrow \widehat{a}_m$ Page 252, line -5: a_m Page 259, $\lim -9$: $f(z) \rightarrow f(t)$

Page 261, line 12: $(8.2) \rightarrow (8.4)$ Page 275, line -7: $\sin(t-s) \rightarrow \sin 2(t-s)$ Page 279, formula (8.18): $\alpha \beta \neq 0 \rightarrow (\alpha, \beta) \neq (0, 0)$ Page 286, Exercise 9c, line 1: period $2l \rightarrow \text{period } 4l/c$ Page 327, line $-2: 1 - t \rightarrow 2\pi - t$ (2 places in exponents) Page 328, line 3: $1-t \rightarrow 2\pi - t$ Page 333 (starting below formula (9.27)) and page 334: $\widehat{f} \quad \rightarrow \quad \widehat{F}$ (numerous places!) Page 354, Example 1, line 1: complex \rightarrow nonzero Page 355, line 4: $(\alpha \alpha' \neq 0, \ \beta \beta' \neq 0) \rightarrow ((\alpha, \alpha') \neq (0, 0), \ (\beta, \beta') \neq (0, 0))$ Page 360, second display: $\tau_2 \rightarrow \tau^2$ Page 371, formula (10.32): $+\frac{\beta}{\mu} \rightarrow -\frac{\beta}{\mu}$ and, in the integral, $v_a \rightarrow v_b$ Page 373, last display before Lemma 10.3: $E_1E_4 \rightarrow \mu^{-1}E_1E_4$ and E_2E_3 \rightarrow $\mu^{-1}E_2E_3$ Page 375, Figure 10.2: The coordinates of the vertices should be divided by b - a.

Page 375, proof of Theorem 10.4(a): The first seven lines of the argument are flawed because of a confusion between the μ of Lemma 10.3 and the $\zeta = \mu^2$ here. Rather than taking γ_N to be the contour in Figure 10.2, let Γ_N be the *right-hand half* of that contour (corrected as above) in the μ -plane (including endpoints), and let γ_N be the image of Γ_N in the ζ -plane under the map $\zeta = \mu^2$. Thus γ_N is a closed contour consisting of two parabolic arcs with focus at the origin and vertices at $\pm [(N + \frac{1}{2})\pi/(b-a)]^2$, intersecting at $\pm 2i[(N + \frac{1}{2})\pi/(b-a)]^2$. Replace the displays on lines 5 and 7 of the proof by

$$\left|\frac{G(x,y,\mu^2)}{\mu^2 - \lambda} 2\mu\right| \le \frac{C|\mu|^{-1}}{|\mu^2 - \lambda|} 2|\mu| \le \frac{C'}{N^2} \quad \text{for } \zeta \text{ on } \Gamma_N,$$

and

$$\left| \int_{\gamma_N} \frac{G(x, y, \zeta)}{\zeta - \lambda} \, d\zeta \right| = \left| \int_{\Gamma_N} \frac{G(x, y, \mu^2)}{\mu^2 - \lambda} \, 2\mu \, d\mu \right| \le \frac{C'}{N^2} (\text{length of } \Gamma_N) = \frac{C''}{N}$$

and then resume the argument in the text starting on line 8.

Page 379, formula (10.35): $xu(x) \rightarrow xu'(x)$

Page 381, first line after second displayed formula:
$$1/\mu\sqrt{x_-x_+} \rightarrow 1/|\mu|\sqrt{x_-x_+}$$

Page 411, line 9:
$$\frac{A(LB)^{n-1}}{(n-1)!} \rightarrow \frac{A(LB)^{n-1}}{(n-1)!} |x-x_0|^{n-1}$$

Page 414, Answer to Exercise 3c in §3.1: $2 - 9i \rightarrow 2 + 9i$

Page 415: Answer to Exercise 3 in §3.2 should be $f_2(x) = x^2 - \frac{1}{3}$.

Page 417, Answer to Exercise 10b in §4.2: $\pi^2 kt$ (in exponent) $\rightarrow \pi^2 k$

Page 417, Answer to Exercise 10c in §4.2: The sum should be multiplied by e^{-kt} .

Page 420, Answer to Exercise 2 in §6.3: $P_2^2(\cos\theta) \rightarrow P_2^2(\cos\phi)$

Page 422, Answer to Exercise 9b in §7.4: $e^{-\nu b} \rightarrow e^{-\nu \beta}$ (six places)

Page 429, top line, second column: T $\rightarrow \Gamma$