ERRATA to
 "FOURIER ANALYSIS AND ITS APPLICATIONS"

(4th and later printings by Brooks/Cole and all printings by the American Mathematical Society)
G. B. Folland

Last updated May 28, 2020
Additional corrections will be gratefully received at folland@math.washington.edu .
Page 13: On the line before (1.20), insert "for $A \neq 0$ " after "and". Immediately after (1.20), insert "For $A=0$ the solution is $X(x)=C_{1}+C_{2} x$."

Page 28, item 14: $\sum_{1}^{\infty} \rightarrow \frac{2}{\pi} \sum_{1}^{\infty}$
Page 31, bottom: Insert the following material that somehow got deleted: "shall present some variations of this result under other conditions on f. We first define the class of functions with which we shall be working."
Page 33, line $-3: \int_{-\pi+\theta}^{\pi+\theta} \rightarrow \int_{-\pi-\theta}^{\pi-\theta}$
Page 36, line -4 : taking taking \rightarrow taking
Page 40, line 10: entry $4 \rightarrow$ entry 6
Page 44, line 5: extiensions \rightarrow extensions
Page 58, line 2: $\int_{-\pi}^{\pi} \rightarrow \frac{1}{2 \pi} \int_{-\pi}^{\pi}$
Page 61, Exercise 1a: $(2.10) \rightarrow(2.12)$
Page 61, Exercise 1b: (2.12) \rightarrow (2.14)
Page 65, formula (3.9): $\mid a_{n}\left\|^{2} \rightarrow\right\| a_{n} \|^{2}$
Page 71, line 7: \sum_{0}^{∞} on the left side should be \sum_{1}^{∞}.
Page 76, line 3 of proof of Lemma 3.2: $\sum_{m}^{n} \rightarrow \sum_{M}^{N}$ (two places, to avoid conflict with use of n as index of summation)
Page 78, line -9 (a 2-line display): $\left|\widetilde{c}_{n}-c_{n}\right|^{2} \rightarrow 2 \pi\left|\widetilde{c}_{n}-c_{n}\right|^{2}$ (two places)
Page 79, next-to-last line of text: $\int_{a}^{b} \rightarrow \int_{-\pi}^{\pi}$
Page 90, last line of Theorem 3.10: $\left\langle f, \phi_{n}\right\rangle \quad \rightarrow\left\langle f, \phi_{n}\right\rangle_{w}$
Page 90, line -8: $\left\langle f_{1}, \widetilde{f}_{2}\right\rangle \quad \rightarrow \quad\left\langle f_{1}, \widetilde{f}_{2}\right\rangle_{w}$
Page 95, line 4: $f^{\prime}(a)-\alpha f(a)=f^{\prime}(b)-\beta f(b)=0 \quad \rightarrow \quad f^{\prime}(a)+\alpha f(a)=f^{\prime}(b)+\beta f(b)=0$
Page 98, line 1: §4.3 \rightarrow §4.4
Page 100, formula (4.8): When L is 2 nd order in t so that $h=\left(h_{1}, h_{2}\right), u_{0}$ is really $\left(u_{0}, 0\right)$.
Page 111, line -2: (4.22) $\rightarrow \quad(4.24)$
Page 114, Exercise 8a, line 2: (2.24) $\rightarrow \quad(2.27)$
Page 117, line $-5: b \rightarrow-b$

Page 152, lines 10, 14, and 15: $\pi c \quad \rightarrow \quad c$ (several places)
Page 152, line 12: 5.3 $\rightarrow \quad 5.2$
Page 151, line 5: §4.4 \rightarrow §4.5
Page 157, Exercise 4: The differential equation should contain the term $u_{z z}$ (although the requested solutions are independent of z).
Page 162, line -10: §4.2 \rightarrow §4.3
Page 163, line 4: $l / 2 c \quad \rightarrow \quad \pi c / l$
Page 176, formula (6.21): $+m^{2} y \quad \rightarrow \quad-m^{2} y$ and $x \rightarrow s$
Page 186, line 11: $e^{-2 x z-z^{2}} \rightarrow e^{2 x z-z^{2}}$
Page 179, formula (6.26): $P_{n}^{|m|}(\phi) \rightarrow P_{n}^{|m|}(\cos \phi)$
Page 190, lines -8 and -7 : Delete "it defines a polynomial of degree n only when α is not a negative integer, and".
Page 190 line $-1: k+1-\alpha \quad \rightarrow \quad k+1+\alpha$
Page 193, line -3 : defninion \rightarrow definition
Page 197, line $-12:-n^{2} y \quad \rightarrow \quad+n^{2} y$
Page 197, line $-7: e^{i n \theta} z^{n} \rightarrow e^{i n \theta} z^{|n|}$
Page 205, line 0: Delete the incorrect page header.
Page 206, line 3 of (v): §8.1 $\rightarrow \S 8.2$
Page 213, Exercise 6: defining $f_{t+s} \rightarrow$ defining $f_{t} * f_{s}$
Page 214, line $-2: i(d / d \xi) e^{-i \xi} \quad \rightarrow \quad i(d / d \xi) e^{-i \xi x}$
Page 216, next-to-last displayed formula: $\operatorname{Res}_{z=i} \rightarrow \operatorname{Res}_{z=i a}$
Page 220, formula (7.18): The $d y$ is missing from the first integral.
Page 221, line 7: $\frac{1}{2 i} \quad \rightarrow \quad-\frac{1}{2 i}$
Page 222, line 1: 2.7 of $\S 2.4 \rightarrow 3.6$ of $\S 3.4$
Page 224, Exercise 7, line 3: Theorem $2.3 \rightarrow$ Theorem 2.5
Page 230, line 4: $2 \pi t \rightarrow \pi t$
Page 233, last displayed formula: $\Delta_{0} \widehat{f} \rightarrow \Delta_{0} \widehat{F}$
Page 235, Exercise 7, last line: $e^{-i(b-a) t / 2} \rightarrow e^{-i(a+b) t / 2}$
Page 236, line 2 of Exercise 10: $f^{\prime}+c f=0 \quad \rightarrow \quad f^{\prime}(x)+c x f(x)=0$
Page 239, line $-5: e^{\xi^{2} k t} \rightarrow e^{-\xi^{2} k t}$
Page 242, line $-1: \lim _{\delta \rightarrow 0} \rightarrow \lim _{\epsilon \rightarrow 0}$
Page 250, line $-3: e^{2 \pi i m} \rightarrow e^{2 \pi i n}$
Page 250, line $-2: \widehat{a}_{n} \rightarrow \widehat{a}_{m}$
Page 251, display after (7.40): $n>k \quad \rightarrow \quad n<k$
Page 252, line $-5: a_{m} \rightarrow \widehat{a}_{m}$
Page 259, lin -9: $f(z) \rightarrow f(t)$

Page 261, line 12: (8.2) \rightarrow (8.4)
Page 275, line -7: $\sin (t-s) \rightarrow \sin 2(t-s)$
Page 279, formula (8.18): $\alpha \beta \neq 0 \quad \rightarrow \quad(\alpha, \beta) \neq(0,0)$
Page 286, Exercise 9c, line 1: period $2 l \rightarrow$ period $4 l / c$
Page 327, line $-2: 1-t \rightarrow 2 \pi-t \quad$ (2 places in exponents)
Page 328, line 3: $1-t \quad \rightarrow \quad 2 \pi-t$
Page 333 (starting below formula (9.27)) and page 334: $\widehat{f} \rightarrow \widehat{F} \quad$ (numerous places!)
Page 354, Example 1, line 1: complex \rightarrow nonzero
Page 355, line 4: $\left(\alpha \alpha^{\prime} \neq 0, \beta \beta^{\prime} \neq 0\right) \quad \rightarrow \quad\left(\left(\alpha, \alpha^{\prime}\right) \neq(0,0),\left(\beta, \beta^{\prime}\right) \neq(0,0)\right)$
Page 360, second display: $\tau_{2} \rightarrow \tau^{2}$
Page 371, formula (10.32): $+\frac{\beta}{\mu} \rightarrow-\frac{\beta}{\mu}$ and, in the integral, $v_{a} \rightarrow v_{b}$
Page 373 , last display before Lemma 10.3: $E_{1} E_{4} \quad \rightarrow \quad \mu^{-1} E_{1} E_{4} \quad$ and $\quad E_{2} E_{3} \quad \rightarrow$ $\mu^{-1} E_{2} E_{3}$
Page 375, Figure 10.2: The coordinates of the vertices should be divided by $b-a$.
Page 375, proof of Theorem 10.4(a): The first seven lines of the argument are flawed because of a confusion between the μ of Lemma 10.3 and the $\zeta=\mu^{2}$ here. Rather than taking γ_{N} to be the contour in Figure 10.2, let Γ_{N} be the right-hand half of that contour (corrected as above) in the μ-plane (including endpoints), and let γ_{N} be the image of Γ_{N} in the ζ-plane under the map $\zeta=\mu^{2}$. Thus γ_{N} is a closed contour consisting of two parabolic arcs with focus at the origin and vertices at $\pm\left[\left(N+\frac{1}{2}\right) \pi /(b-a)\right]^{2}$, intersecting at $\pm 2 i\left[\left(N+\frac{1}{2}\right) \pi /(b-a)\right]^{2}$. Replace the displays on lines 5 and 7 of the proof by

$$
\left|\frac{G\left(x, y, \mu^{2}\right)}{\mu^{2}-\lambda} 2 \mu\right| \leq \frac{C|\mu|^{-1}}{\left|\mu^{2}-\lambda\right|} 2|\mu| \leq \frac{C^{\prime}}{N^{2}} \quad \text { for } \zeta \text { on } \Gamma_{N}
$$

and

$$
\left|\int_{\gamma_{N}} \frac{G(x, y, \zeta)}{\zeta-\lambda} d \zeta\right|=\left|\int_{\Gamma_{N}} \frac{G\left(x, y, \mu^{2}\right)}{\mu^{2}-\lambda} 2 \mu d \mu\right| \leq \frac{C^{\prime}}{N^{2}}\left(\text { length of } \Gamma_{N}\right)=\frac{C^{\prime \prime}}{N}
$$

and then resume the argument in the text starting on line 8 .
Page 379, formula (10.35): $x u(x) \quad \rightarrow x u^{\prime}(x)$
Page 381, first line after second displayed formula: $1 / \mu \sqrt{x_{-} x_{+}} \rightarrow 1 /|\mu| \sqrt{x_{-} x_{+}}$
Page 411, line 9: $\frac{A(L B)^{n-1}}{(n-1)!} \rightarrow \frac{A(L B)^{n-1}}{(n-1)!}\left|x-x_{0}\right|^{n-1}$
Page 414, Answer to Exercise 3c in §3.1: $2-9 i \quad \rightarrow \quad 2+9 i$
Page 415: Answer to Exercise 3 in $\S 3.2$ should be $f_{2}(x)=x^{2}-\frac{1}{3}$.
Page 417, Answer to Exercise 10b in §4.2: $\pi^{2} k t$ (in exponent) $\rightarrow \pi^{2} k$
Page 417, Answer to Exercise 10c in $\S 4.2$: The sum should be multiplied by $e^{-k t}$.
Page 420, Answer to Exercise 2 in $\S 6.3: P_{2}^{2}(\cos \theta) \quad \rightarrow \quad P_{2}^{2}(\cos \phi)$
Page 422, Answer to Exercise 9b in §7.4: $e^{-\nu b} \rightarrow e^{-\nu \beta}$ (six places)
Page 429, top line, second column: $\mathrm{T} \rightarrow \Gamma$

