Errata to
 A COURSE IN ABSTRACT HARMONIC ANALYSIS
 (2nd edition, 2015)

G. B. Folland

Last updated July 24, 2023

Additional corrections will be gratefully received at folland@math.washington.edu .
"line $-n$ " means "line n from the bottom."

The following four items will be corrected in the second printing.
Page 122, line 1: The end-of-proof sign at the end of this line should be at the bottom of the preceding page.
Page 259, Figure 7.1: r+ and r- should be ρ_{h} and ρ_{-h}, respectively.
Page 261, Figure 7.2: p,+ p 0 , and $\mathrm{p}-$ should be $\pi^{+}, \pi_{\sigma}^{0}$, and π^{-}, respectively.
Page 266, Figure 7.3: $\mathrm{p}+$, $\mathrm{p}-$, $\mathrm{d} 1-$, $\mathrm{d} 2-$, and dn- should be $\pi_{i t}^{+}, \pi_{i t}^{-}, \delta_{1}^{-}, \delta_{2}^{-}$, and δ_{n}^{-}, respectively.

Page 65, line 2: $\operatorname{supp} f=\overline{\bigcup_{a} V a} \subset \bigcup_{a} \bar{V} a \quad \rightarrow \quad \operatorname{supp} f=\overline{\bigcup_{a} V a}$
Page 72, line -8: $88 \rightarrow 89$
Page 85: Replace the 2-line display in the middle of the page following the word "Moreover," by

$$
\int\left\langle\pi_{\phi}(y) \epsilon, \epsilon\right\rangle_{\phi} f(y) d y=\left\langle\pi_{\phi}(f) \epsilon, \epsilon\right\rangle_{\phi}=\langle\tilde{f}, \epsilon\rangle_{\phi}=\int f(y) \phi(y) d y
$$

Page 99, 2nd paragraph of Example, line 6: nonnegative \rightarrow positive
Page 99, 2nd paragraph of Example, line 8: Before "From", insert "Also, $w_{0}=r_{0}=1$."
Page 123, Lemma 4.66: subsets \rightarrow closed subsets
Page 124, line 11: Delete $=\nu(\mathcal{J}) \cap \partial \nu(f) \cap \nu\left(f_{n}\right)=\nu(\mathcal{J}) \cap \partial \nu(f)$ and replace the last $=$ by \subset. Page 130, line 1: We have $\rightarrow \quad$ For $f \in L^{1}(G)$ we have
Page 131, proof of Theorem 4.81: (i), (ii), and (iii) should be (a), (b), and (c).
Page 148, Theorem 5.26, line 2: $d_{\pi} \rightarrow d_{\pi}^{-1}$
Page 148, last two lines: The d_{π}^{2} should be deleted, and the two instances of d_{π}^{3} should each be d_{π}.
Page 149, Section 5.4, line 3: $S O(3)$ and $\quad \rightarrow \quad S O(3), S O(4)$, and
Page 158, line -4: translation \rightarrow multiplication

Page 168, lines 1-2: $\mathcal{F}_{0} \quad \rightarrow \quad \mathcal{F}^{0} \quad$ (two places); also, delete "and is left uniformly continuous on G."
Page 170, proof of Proposition 6.8, 2nd paragraph: In the first sentence, replace $\sup _{x \in G}\left\|f_{\alpha}(x)\right\|_{\sigma}$ by $\left\|f_{\alpha}\right\|$. Replace the second and third sentences by "Since $\left\|f_{\alpha}\right\|$ is given by (6.6), where ϕ can be taken to be supported in a fixed compact neighborhood N of K, it is enough to show $\left\|f_{\alpha}(x)\right\|_{\sigma} \leq C \sup _{y \in G}\|\alpha(y)\|_{\sigma}$ for $x \in N$. This is true since the integration over H in (6.5) is effectively over the compact set $H \cap N^{-1} K$ for $x \in N$."
Page 201, line 6: Insert "with $x \in H$ " after " ν ' $=x \nu$ ".
Page 227, line -9: $\mathcal{H}^{\infty} \rightarrow \mathcal{H}_{\infty}$
Page 246, line -8: $\mu \quad \rightarrow \quad \mu_{0} \quad$ (2 places)
Page 279, lines 5-6 of Section 3: The clause "one is $\ldots V_{1}$ " is a correct characterization of $V_{1} \otimes V_{2}$ only when $\operatorname{dim} V_{2}<\infty$. This has no effect on the following material.

