Errata to A COURSE IN ABSTRACT HARMONIC ANALYSIS (1st edition, 1995)

G. B. Folland

Last updated August 28, 2021

Additional corrections will be gratefully received at folland@math.washington.edu .

Page 2, 2nd line of Example 3: $\sum_{\infty}^{\infty} \rightarrow \sum_{-\infty}^{\infty}$
Page 9, line 17: $f_{x}^{-1}(y) \rightarrow f_{x}(y)$
Page 10, line 3: $h\left(\delta^{1}\right) \quad \rightarrow \quad h_{\theta}\left(\delta^{1}\right)$
Page 11, proof of Lemma 1.21, line 3: $\leq C \quad \rightarrow \quad<C$
Page 12, Proposition 1.24b: Assume the involution on \mathcal{B} is an isometry.
Page 18, line 10: $\int\left\langle T_{f} u, u\right\rangle \rightarrow\left\langle T_{f} u, u\right\rangle$
Page 18, line $-1: \int\left\langle T_{f} T_{g} u, v\right\rangle \quad \rightarrow\left\langle T_{f} T_{g} u, v\right\rangle$
Page 19, line $-3:(1.36 \mathrm{c}) \quad \rightarrow \quad(1.36 \mathrm{~b})$
Page 21, line 7: simple \rightarrow of simple
Page 21, line 4 of proof of Theorem 1.43: $c_{k} \quad \rightarrow \quad c_{j}$
Page 22, proof of Theorem (1.44), line 6: (1.35) \rightarrow (1.36)
Page 23, second paragraph of proof of Spectral Theorem II: Let $\mathcal{A}_{i}=\left\{T \mid \mathcal{H}_{i}: T \in \mathcal{A}\right\} . \Sigma_{i}$ should really be $\sigma\left(\mathcal{A}_{i}\right)$. However, the natural surjection $\mathcal{A} \rightarrow \mathcal{A}_{i}$ gives a natural continuous injection $\sigma\left(\mathcal{A}_{i}\right) \rightarrow \sigma(\mathcal{A})$, so $\sigma\left(\mathcal{A}_{i}\right)$ can be identified with a subset of Σ.
Page 24, line 4: $T_{f_{n}} v=T_{f} v \quad \rightarrow \quad T_{f_{n}} v-T_{f} v$
Page 24, line 9: (1.15c) \rightarrow (1.15)
Page 25, line -13: *-homeomorphism $\quad \rightarrow \quad *$-homomorphisms
Page 27, 5th line after Theorem 1.53: is no $\quad \rightarrow \quad$ is no nonzero
Page 32, proof of Proposition 2.1(b): continuity \rightarrow Continuity
Page 33, line 1: $G \times H \quad \rightarrow \quad G / H$; also delete "by".
Page 34, 3rd line after the proof of Proposition 2.6: Delete the second "of the group".
Page 35, line $-4: x-y \quad \rightarrow \quad x-z$
Page 36, line 4: $\bar{p} \mathbf{Z}_{p} \quad \rightarrow \quad p \mathbf{Z}_{p}$
Page 39, line -7: $\int h d \lambda \int f d \mu \quad \rightarrow \quad \int h d \mu \int f d \lambda$
Page 42, line 16: neither continuous nor \rightarrow not
Page 45, proof of Proposition (2.23), line 5: $\phi(x) \quad \rightarrow \quad f(x)$
Page 48, line -12 : symmetric $\quad \rightarrow$ compact symmetric
Page 51, first two lines after (2.36): The substitutions should be $y \rightarrow x y$ and $y \rightarrow y^{-1}$.

Page 53, proof of Proposition 2.41, line 2: $(\operatorname{supp} g) V \quad \rightarrow \quad(\operatorname{supp} g) V^{-1}$
Page 55, proof of Prop. (2.44), line 8, "Exercise 5.32": In the second edition of [39], this is Exercise 5.28.
Page 56, line 7: $d h \rightarrow d \xi$
Page 62, first line after proof of Thm. 2.59: quasi-invariant \rightarrow strongly quasi-invariant. (All quasi-invariant measures on G / H are equivalent, but Theorem 2.59 doesn't prove it.
See Bourbaki [15].)
Page 62, lines -10 and $-9: \mathcal{F} \quad \rightarrow \quad \Phi$
Page 65, line 3: is then is \rightarrow is then
Page 68, line $-11: \pi \quad \rightarrow \quad \widetilde{\pi}$
Page 78, line 6: $\phi\left(y^{-1} z\right) \rightarrow \phi\left(z^{-1} y\right)$
Page 78, line 7: $\phi\left((x y)^{-1}(x z)\right) \quad \rightarrow \quad \phi\left((x z)^{-1}(x y)\right)$
Page 78, lines 12, 15, and 16: $\mathcal{H}_{\pi} \rightarrow \mathcal{H}_{\phi}$
Page 79, line 1: $\widetilde{f} g \quad \rightarrow \quad \widetilde{f}$
Page 80, line 7: $j=1,2 \quad \rightarrow \quad j=0,1$
Page 80, proof of Theorem (3.25), line 6: $\phi(0) \quad \rightarrow \quad \phi(1)$
Page 80, line -5: $\left\langle T\left(L_{x} f\right)^{\sim}, g\right\rangle_{\phi} \quad \rightarrow\left\langle T\left(L_{x} f\right)^{\sim}, \widetilde{g}\right\rangle_{\phi}$
Page 81, proof of Theorem 3.27, line 2: $\phi \quad \rightarrow \quad \phi_{0}$
Page 81, proof of Theorem 3.27, lines 5-7: $\phi_{\alpha}(0) \quad \rightarrow \quad \phi_{\alpha}(1) \quad$ (several places)
Page 83, line -5: it includes \rightarrow its linear span includes
Page 88, line -9: For this calculation we need to know that $\phi(x)=\Phi\left(L_{x} L_{y} f\right) / \Phi\left(L_{y} f\right)$.
This is OK provided that $\Phi\left(L_{y} f\right) \neq 0$, by the preceding argument. In fact, $\left|\Phi\left(L_{y} f\right)\right|$ is independent of y. To see this, let $\left\{\psi_{U}\right\}$ be an approximate identity. Then $\Phi\left(L_{y} f\right)=$ $\lim \Phi\left(L_{y} f * \psi_{U}\right)=\lim \Phi\left(f * L_{y} \psi_{U}\right)=\lim \Phi(f) \Phi\left(L_{y} \psi_{U}\right)$, and $\left|\Phi\left(L_{y} \psi_{U}\right)\right| \leq\left\|\psi_{U}\right\|_{1}=1$, so $\left|\Phi\left(L_{y} f\right)\right| \leq|\Phi(f)|$ for all y and f; but then $|\Phi(f)|=\left|\Phi\left(L_{y^{-1}} L_{y} f\right)\right| \leq\left|\Phi\left(L_{y} f\right)\right|$ too.
Page 94, display (4.15): $L_{\eta} f(\xi) \quad \rightarrow \quad L_{\eta} \widehat{f}(\xi)$
Page 96, 4th display: $M(G) \quad \rightarrow \quad M(\widehat{G})$
Page 104, proof of Theorem 4.39, line 5: (2.45) $\quad \rightarrow \quad(2.46)$
Page 130, 2nd paragraph, line 1: (5.5) $\rightarrow \quad(5.6)$
Page 131, line 3: $\pi_{j k}(x) \rightarrow \pi_{k j}(x)$
Page 138, Theorem 5.26, line 2: $d_{\pi} \rightarrow d_{\pi}^{-1}$
Page 138, first display: The d_{π}^{2} should be deleted, and the two instances of d_{π}^{3} should each be d_{π}.
Page 140, first display: k 's should be m 's, and c_{1} should be c_{0}.
Page 143: The displayed formula on lines $2-3$ should be labeled "(5.38)".
Page 147, Theorem 5.44, line 3: $e^{i \theta} \rightarrow e^{i n \theta}$
Page 152, line -4: $f(x) \rightarrow f_{\alpha}(x)$

Page 155, lines -7 and $-6: \mathcal{F}_{0} \quad \rightarrow \quad \mathcal{F}^{0}$
Page 162, line 21: $S O(2) \quad \rightarrow \quad S O(3)$
Page 164, line 3 of (6.12): $f^{*}\left(z^{-1}\right) \quad \rightarrow \quad f^{*}(z)$
Page 180, lines $-7,-5$, and $-3: D_{G} \quad \rightarrow \quad \Delta_{G}$
Page 186, line 11: $6.44 \rightarrow 1.44$
Page 187, line $-2: x^{-1} x h \quad \rightarrow \quad x h x^{-1}$
Page 192, second display: $T_{s t} \beta$ should be moved from end of first line to beginning of second line.
Page 205, line 14: $\mathcal{H}^{\infty} \rightarrow \mathcal{H}_{\infty}$
Page 211, line 8: composition with \rightarrow composition of
Page 212, line - 2 : Line should begin with "Proof:".
Page 214, line 11: $\phi_{\alpha} \otimes g_{\beta} \quad \rightarrow \quad f_{\alpha} \otimes g_{\beta}$
Page 222, line -6: $\mathcal{A} \rightarrow A$
Page 223, line 6: $\int_{\oplus} \quad \rightarrow \quad \int^{\oplus}$
Page 232, line 4: $U \mathcal{C}(\pi) U^{-1} \quad \rightarrow \quad$ the center of $U \mathcal{C}(\pi) U^{-1}$.
Page 238, equation (7.49): $\Delta(x)^{-1 / 2} \rightarrow \Delta(x)^{1 / 2}$
Page 241, line -7: $s^{-1} e^{s} t \rightarrow s^{-1}\left(e^{s}-1\right) t$
Page 243, line 4: $t \rightarrow \quad \rightarrow \quad$ (2 places)
Page 243, line 5: Insert $\phi(t)$ after $s^{1 / 2}$.
Page 244, sentence after (7.53): For the representation δ_{n}^{-}, the factor $(-b z+d)^{-n}$ in (7.53) must be replaced by $(-b \bar{z}+d)^{-n}$.
Page 245, line - 2 : Insert "(except for a set of measure zero)" after "each coset".
Page 247, line 8: Theorem $3.2 \rightarrow$ Theorem 2.3
Page 249, line 4: The description of Ω is incorrect. Each $x \neq e$ in G can be written uniquely as $\prod_{1}^{n} x_{j}(n \geq 1)$ where each x_{j} is either a, b, a^{-1}, or b^{-1}, and a and a^{-1}, or b and b^{-1}, never occur adjacent to one another in the product. The set $\{x b: x \in G\}$ in the definition of Ω should be replaced by the set of all x whose last factor x_{n} is b or b^{-1}.
Page 254 , line -9 : precisely $\rightarrow \quad$ precisely when
Page 255, proof of Proposition A.1.6: On line 4, sum \rightarrow average. On line $5, S=$ $\frac{1}{2}\left[f_{+}(S)+f_{-}(S)\right]$. On line 6 , delete the $\frac{1}{2}$.
Page 256, last line before Appendix 2: $\sum_{n}^{\infty} \rightarrow \sum_{n+1}^{\infty}$ (two places)
Page 261, line $-2: \Delta(y) R_{y} f \rightarrow \Delta(y)^{1 / p} R_{y} f$. The following sentence is correct only if either G is unimodular or $p=1$ or g has compact support; cf. Proposition (2.39).
Page 262, line -9: 1 and $2 \rightarrow \quad$ (A3.1) and (A3.3)
Page 262, line -8: $2 \rightarrow$ (A3.3)
Page 262, line $-7: \pi(x) v \rightarrow \pi(x) u$
Page 264, [17]: Brocker \rightarrow Bröcker

Pages 274-5: The page number for "measure, Radon" and "Radon measure" is vii, and the page number for "measure, regular" and "regular measure" is viii.
Page 275, "representation, equivalent": $169 \rightarrow 69$

