ERRATA to "INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS" (2nd ed.)

G. B. Folland

Last updated June 21, 2023

Additional corrections will be gratefully received at folland@math.washington.edu .

Page 2, line -7: $a_{n} \quad \rightarrow \quad \alpha_{n}$
Page 3, line 1 after "Function Spaces": dente \rightarrow denote
Page 7, proof of Prop. 0.6, line 4: $r e^{-r^{2}} \rightarrow r e^{-\pi r^{2}}$
Page 12, line 14: $e^{1 /\left(1-t^{2}\right)} \rightarrow e^{1 /\left(t^{2}-1\right)}$
Page 13, third line of proof of Theorem 0.19: take $\zeta_{j}=\psi \phi_{j} / \Phi$, where $\psi \in C_{c}^{\infty}\left(\bigcup_{1}^{N} W_{j}\right)$ and $\psi=1$ on K.
Page 16, line 5: reamins \rightarrow remains
Page 18, line -6 : graddaddy \rightarrow granddaddy
Page 43, second-to-last displayed equation: $\partial_{j}^{t} \rightarrow \partial_{t}^{j}$
Page 43, last displayed equation: $|\alpha|_{j} \quad \rightarrow \quad\left|\alpha_{j}\right|$
Page 61, Lemma 1.53: You can replace $(d / 2)^{k}$ by d^{k}, and the proof is trivial. (Exercise!)
Page 67, 3rd line of proof of Theorem 2.1: $\widehat{f} \rightarrow \widehat{u}$
Page 69, line 2: $C^{1} \rightarrow C^{2}$
Page 75, display (2.19), second formula: $\pi \quad \rightarrow \quad 4 \pi$
Page 77, line -7 : Insert "the final paragraph of" before " $\S 4 \mathrm{~B}$."
Page 84, line 12: (2.31) $\quad \rightarrow \quad(2.32)$
Page 87, line 7: $\delta(x, y) \rightarrow \delta(x-y)$
Page 87, first line after Claim (2.38): calleed $\quad \rightarrow \quad$ called
Page 91, line 1: (2.37) $\rightarrow \quad$ (2.40)
Page 97, second display in proof of Theorem 2.48: $\omega_{n-1} \rightarrow \omega_{n}$
Page 97, next line after preceding item: (2.44) $\rightarrow \quad$ (2.46)
Page 99, line -10: $P_{k} \Delta \bar{P}_{j} \rightarrow \bar{P}_{k} \Delta P_{j}$
Page 100, line -10 : ser \rightarrow set
Page 100, line -1 : proerties \rightarrow properties
Page 105, lines 9 and 14: $\frac{n-1}{r} \rightarrow \frac{n-1}{r} f^{\prime}(r)$
Page 109, Exercise 5, Hint: $e^{i \theta} \quad \rightarrow \quad e^{i k \theta}$
Page 112, line -5 : corvilinear \rightarrow curvilinear
Page 113, line 11: $\frac{\partial^{2} u}{\partial y_{j}^{2}} \quad \rightarrow \quad \frac{\partial^{2} U}{\partial y_{j}^{2}}$
Page 118, Remark, line 2: $C^{1}(\bar{\Omega}) \quad \rightarrow \quad C^{2}(\bar{\Omega})$

Page 119, last line of proof of Prop. 3.6: right \rightarrow left
Page 121, Proposition (3.10), line 5: $\|f\|_{\infty} \quad \rightarrow \quad\|f\|_{p}$
Page 121, line -3: (3.11) $\rightarrow \quad(3.10)$
Page 125, line 12: $\nu(x) \cdot y \quad \rightarrow \quad \nu(x) \cdot(y-x)$
Page 133, Exercise 1: The asserted formula for $u(x)$ should be multiplied by R^{n-1} (including the case $n=2$).
Page 134, Exercise 2: The integrand of the second integral should be $f(y) N(y)$.
Page 137, line 1: (3.35) $\quad \rightarrow \quad(3.36)$
Page 137, 2nd paragraph, lines 5 and 9: $\phi=\partial_{\nu-} u \quad \rightarrow \quad \phi=-\partial_{\nu-} u$
Page 137, 2nd paragraph, lines 6 and 8: The integrals on the right sides of both equalities need minus signs $\left(\int \quad \rightarrow \quad-\int\right)$.
Page 141, line -9: in in \rightarrow in
Page 145, line 4: $K(x, t) \rightarrow K\left(x-x_{0}, t_{0}-t\right)$ (two places)
Page 150, lines 1 and 2: $k_{\psi} \quad \rightarrow \quad \kappa_{\psi}$
Page 157, line 4: $3 \mathrm{H} \quad \rightarrow \quad 2 \mathrm{H}$
Page 173, formula (5.22): $\frac{1}{1 \cdot 3 \cdots(n-1)} \quad \rightarrow \frac{2}{1 \cdot 3 \cdots(n-1)} \quad$ and $\quad \int_{|y|=1} \rightarrow \int_{|y| \leq 1}$
Page 174, formula (5.24): $\partial_{t} u-\Delta u \quad \rightarrow \quad \partial_{t}^{2} u-\Delta u$
Page 175, line 4 and line $-3: \partial_{t} v-\Delta v \rightarrow \partial_{t}^{2} v-\Delta v$
Page 176, formula (5.27): $\phi \in C_{c}^{\infty} \quad \rightarrow \quad \psi \in C_{c}^{\infty}$
Page 177, line $-6: \partial_{t} \widehat{u}(\xi, t) \rightarrow \partial_{t} \widehat{u}(\xi, 0)$
Page 181, 4th line before (5.32): if \rightarrow of
Page 182, Exercise 1: (4.19) and (4.20) $\rightarrow \quad$ (5.19) and (5.20)
Page 184, formula (5.33), first line: $\partial_{t} u \rightarrow \partial_{t}^{2} u$
Page 192, line 9: if \rightarrow of
Page 192, line -3: at as \rightarrow as
Page 194, line 3 of Proof: $\|f\|_{s} \quad \rightarrow \quad C\|f\|_{s}$
Page 195, next-to-last line of Remark 1: Example $1 \rightarrow$ Example 2
Page 201, lines 9 and 11: $f_{k_{j}} \rightarrow \widehat{f}_{k_{j}}$
Page 203, line -8: $\left(1+t^{2}\right)^{s-1) / 2} \quad \rightarrow \quad\left(1+t^{2}\right)^{(s-1) / 2}$
Page 204, line -4: $u \quad \rightarrow \quad f$
Page 205, lines 5, 7, and 8: $u \quad \rightarrow \quad f$
Page 207, line 2: $\|\phi\|_{s-x} \quad \rightarrow\|\phi\|_{s+x}$
Page 208, line 6: There should be no restriction on the support of g in this formula. However, let ϕ be a function in $C_{c}^{\infty}\left(\Theta^{-1}\left(\Omega_{1}^{\prime}\right)\right)$ with $\phi=1$ on $\Theta^{-1}\left(\Omega_{0}^{\prime}\right)$; then $\int(f \circ \Theta) \bar{g}=$ $\int(f \circ \Theta) \overline{\phi g}$, so one can replace g by ϕg in the subsequent argument. Since the map $g \mapsto \phi g$ is bounded on H_{s} for all s, this yields the desired estimate in the end.

Page 208, line -5 : ony \rightarrow any
Page 210, formula (6.27): $|\alpha| \leq k \quad \rightarrow \quad|\alpha|=k$
Page 212, lines 9 and 10: $|\alpha| \leq k \quad \rightarrow \quad|\alpha|=k$
Page 216, line - $2: L u \quad \rightarrow \quad P(D) u$
Page 218, line 2: (6.30) $\rightarrow \quad(6.33)$ and $L u \quad \rightarrow \quad P(D) u$
Page 224, line 8: $\int_{N}(r) \rightarrow \int_{N(r)}$
Page 225, line 1: if $\quad \rightarrow \quad$ of
Page 225, Theorem (6.47): $S \rightarrow \partial \Omega \quad$ (two places)
Page 226, Theorem (6.51), line 2: $\partial^{\alpha} u \quad \rightarrow \quad \partial^{\alpha} f$
Page 227, Proposition (6.52): (1) In the first sentence, add the hypothesis $|\alpha|=k+1$. (2)
On both sides of the displayed inequality, the norm $\|\cdot\|_{k, N(r)}$ should be $\|\cdot\|_{0, N(r)}$.
Page 227, proof of Proposition (6.52): (6.21) \rightarrow (6.20)
Page 227, Exercise 1: Ω should be $\left\{r e^{i \theta}:-\pi<\theta<\pi, \frac{1}{2}<r<1\right\}$.
Page 229, proof of Proposition (7.1), line 7: $P_{\xi^{\prime}}(x) \quad \rightarrow \quad P_{\xi^{\prime}}(z)$
Page 231, display before (7.3): $\partial^{\alpha} u \quad \rightarrow \quad \partial^{\beta} u$
Page 233, line $-1: \alpha_{n} \leq j+1 \quad \rightarrow \quad \alpha_{n} \geq j+1$
Page 235, line -6: (5.6) \rightarrow (7.6)
Page 245, line -9: Put absolute value signs around the whole sum.
Page 245, lines -8 and $-6:\|u\|_{m, \Omega} \quad \rightarrow \quad\|u\|_{m, \Omega}^{2}$
Page 248, lines 2 and 3 of section E: $X \rightarrow X$
Page 272, line -7 : distibution \rightarrow distribution
Page 273, line 9 of proof: $|\alpha|-m+j \quad \rightarrow \quad m-|\alpha|+j$
Page 274, line 2: $\phi=1$ on $\operatorname{sing} \operatorname{supp} u \quad \rightarrow \quad \phi=1$ on a neighborhood of $\operatorname{sing} \operatorname{supp} u$
Page 275, Proposition 8.11(a): the set $\Omega-\Omega=\{x-y: x, y \in \Omega\} \quad \rightarrow \quad$ the set Ω
Page 275, proof of Prop. 8.11, line 3: $\Omega-\Omega \rightarrow-\Omega+x \quad$ (2 places)
Page 275, proof of Prop. 8.11: Replace the material beginning with "Moreover" by the following: Moreover, if Ω is dense, then so is $-\Omega+x$. Thus, for each $x \in \Omega, p_{2}^{\vee}(x, \cdot)$ vanishes on a dense set and so vanishes identically; hence so does $p(x, \cdot)$. On the other hand, if Ω is not dense, we can take $p(x, \xi)=\psi(x) e^{-2 \pi i x \cdot \xi} \widehat{\phi}(-\xi)$ where $\psi \in C_{c}^{\infty}(\Omega)$ and $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n} \backslash \Omega\right)$, for then $p_{2}^{\vee}(x, z)=\psi(x) \phi(x-z)$ and hence $p_{2}^{\vee}(x, x-y)=\psi(x) \phi(y)=0$ for $x, y \in \Omega$.
Page 277, line 4: $D^{\alpha} \delta(x-y) \rightarrow D_{x}^{\alpha} \delta(x-y)$
Page 280, line -7: $D_{\xi}^{\beta} \rightarrow D_{\xi}^{\alpha}$
Page 285, (8.24): Σ_{a} should be the closure of the set on the right side.
Page 287, line 9: $d \eta \quad \rightarrow \quad d y$
Page 289, next-to-last line of proof of Corollary (8.32): $\Psi^{-\infty} \quad \rightarrow \quad S^{-\infty}$

Page 290, line 3 of proof: $u(x) v(y) \quad \rightarrow \quad u(y) v(x)$
Page 293, line 4: then then \rightarrow then
Page 293, last line: $2 \pi i \rightarrow \frac{1}{2 \pi i}$
Page 305, line 3: and and \rightarrow and
Page 323, Huygens phenomenon and Huygens principle: $167 \rightarrow 172$

