ERRATA to "INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS" (2nd ed.)

G. B. Folland

Last updated June 21, 2023

Additional corrections will be gratefully received at folland@math.washington.edu.

Page 2, line -7: $a_n \rightarrow \alpha_n$

Page 3, line 1 after "Function Spaces": dente \rightarrow denote

Page 7, proof of Prop. 0.6, line 4: $re^{-r^2} \rightarrow re^{-\pi r^2}$

Page 12, line 14: $e^{1/(1-t^2)} \rightarrow e^{1/(t^2-1)}$

Page 13, third line of proof of Theorem 0.19: take $\zeta_j = \psi \phi_j/\Phi$, where $\psi \in C_c^{\infty}(\bigcup_{1}^N W_j)$ and $\psi = 1$ on K.

Page 16, line 5: reamins \rightarrow remains

Page 18, line -6: graddaddy \rightarrow granddaddy

Page 43, second-to-last displayed equation: $\partial_i^t \rightarrow \partial_t^j$

Page 43, last displayed equation: $|\alpha|_j \rightarrow |\alpha_j|$

Page 61, Lemma 1.53: You can replace $(d/2)^k$ by d^k , and the proof is trivial. (Exercise!)

Page 67, 3rd line of proof of Theorem 2.1: $\widehat{f} \rightarrow \widehat{u}$

Page 69, line 2: $C^1 \rightarrow C^2$

Page 75, display (2.19), second formula: $\pi \rightarrow 4\pi$

Page 77, line -7: Insert "the final paragraph of" before " $\S4B$."

Page 84, line 12: $(2.31) \rightarrow (2.32)$

Page 87, line 7: $\delta(x,y) \rightarrow \delta(x-y)$

Page 87, first line after Claim (2.38): called \rightarrow called

Page 91, line 1: $(2.37) \rightarrow (2.40)$

Page 97, second display in proof of Theorem 2.48: $\omega_{n-1} \rightarrow \omega_n$

Page 97, next line after preceding item: (2.44) \rightarrow (2.46)

Page 99, line -10: $P_k \Delta \overline{P}_i \rightarrow \overline{P}_k \Delta P_i$

Page 100, line -10: ser \rightarrow set

Page 100, line -1: proerties \rightarrow properties

Page 105, lines 9 and 14: $\frac{n-1}{r} \rightarrow \frac{n-1}{r} f'(r)$

Page 109, Exercise 5, Hint: $e^{i\theta} \rightarrow e^{ik\theta}$

Page 112, line -5: corvilinear \rightarrow curvilinear

Page 113, line 11: $\frac{\partial^2 u}{\partial y_i^2} \rightarrow \frac{\partial^2 U}{\partial y_i^2}$

Page 118, Remark, line 2: $C^1(\overline{\Omega}) \rightarrow C^2(\overline{\Omega})$

```
Page 119, last line of proof of Prop. 3.6: right \rightarrow left
```

Page 121, Proposition (3.10), line 5:
$$||f||_{\infty} \rightarrow ||f||_{p}$$

Page 121, line
$$-3$$
: (3.11) \rightarrow (3.10)

Page 125, line 12:
$$\nu(x) \cdot y \rightarrow \nu(x) \cdot (y-x)$$

Page 133, Exercise 1: The asserted formula for u(x) should be multiplied by \mathbb{R}^{n-1} (including the case n=2).

Page 134, Exercise 2: The integrand of the second integral should be f(y)N(y).

Page 137, line 1:
$$(3.35) \rightarrow (3.36)$$

Page 137, 2nd paragraph, lines 5 and 9:
$$\phi = \partial_{\nu} u \rightarrow \phi = -\partial_{\nu} u$$

Page 137, 2nd paragraph, lines 6 and 8: The integrals on the right sides of both equalities need minus signs $(\int \rightarrow -\int)$.

Page 141, line
$$-9$$
: in in \rightarrow in

Page 145, line 4:
$$K(x,t) \rightarrow K(x-x_0, t_0-t)$$
 (two places)

Page 150, lines 1 and 2:
$$k_{\psi} \rightarrow \kappa_{\psi}$$

Page 157, line 4: 3H
$$\rightarrow$$
 2H

Page 173, formula (5.22):
$$\frac{1}{1\cdot 3\cdots (n-1)}$$
 \rightarrow $\frac{2}{1\cdot 3\cdots (n-1)}$ and $\int_{|y|=1}$ \rightarrow $\int_{|y|\leq 1}$

Page 174, formula (5.24):
$$\partial_t u - \Delta u \rightarrow \partial_t^2 u - \Delta u$$

Page 175, line 4 and line
$$-3$$
: $\partial_t v - \Delta v \rightarrow \partial_t^2 v - \Delta v$

Page 176, formula (5.27):
$$\phi \in C_c^{\infty} \to \psi \in C_c^{\infty}$$

Page 177, line -6:
$$\partial_t \widehat{u}(\xi, t) \rightarrow \partial_t \widehat{u}(\xi, 0)$$

Page 181, 4th line before (5.32): if
$$\rightarrow$$
 of

Page 182, Exercise 1:
$$(4.19)$$
 and (4.20) \rightarrow (5.19) and (5.20)

Page 184, formula (5.33), first line:
$$\partial_t u \rightarrow \partial_t^2 u$$

Page 192, line 9: if
$$\rightarrow$$
 of

Page 192, line
$$-3$$
: at as \rightarrow as

Page 194, line 3 of Proof:
$$||f||_s \rightarrow C||f||_s$$

Page 195, next-to-last line of Remark 1: Example 1 \rightarrow Example 2

Page 201, lines 9 and 11:
$$f_{k_j} \rightarrow \widehat{f}_{k_j}$$

Page 203, line
$$-8: (1+t^2)^{s-1)/2} \rightarrow (1+t^2)^{(s-1)/2}$$

Page 204, line
$$-4$$
: $u \rightarrow f$

Page 205, lines 5, 7, and 8:
$$u \rightarrow f$$

Page 207, line 2:
$$\|\phi\|_{s-x} \rightarrow \|\phi\|_{s+x}$$

Page 208, line 6: There should be no restriction on the support of g in this formula. However, let ϕ be a function in $C_c^{\infty}(\Theta^{-1}(\Omega_1'))$ with $\phi = 1$ on $\Theta^{-1}(\Omega_0')$; then $\int (f \circ \Theta)\overline{g} = \int (f \circ \Theta)\overline{\phi g}$, so one can replace g by ϕg in the subsequent argument. Since the map $g \mapsto \phi g$ is bounded on H_s for all s, this yields the desired estimate in the end.

```
Page 208, line -5: ony \rightarrow any
```

Page 210, formula (6.27):
$$|\alpha| \leq k \quad \rightarrow \quad |\alpha| = k$$

Page 212, lines 9 and 10:
$$|\alpha| \le k \rightarrow |\alpha| = k$$

Page 216, line
$$-2$$
: $Lu \rightarrow P(D)u$

Page 218, line 2: (6.30)
$$\rightarrow$$
 (6.33) and $Lu \rightarrow P(D)u$

Page 224, line 8:
$$\int_N (r) \rightarrow \int_{N(r)}$$

Page 225, line 1: if
$$\rightarrow$$
 of

Page 225, Theorem (6.47):
$$S \rightarrow \partial \Omega$$
 (two places)

Page 226, Theorem (6.51), line 2:
$$\partial^{\alpha} u \rightarrow \partial^{\alpha} f$$

Page 227, Proposition (6.52): (1) In the first sentence, add the hypothesis $|\alpha| = k + 1$. (2) On both sides of the displayed inequality, the norm $\|\cdot\|_{k,N(r)}$ should be $\|\cdot\|_{0,N(r)}$.

Page 227, proof of Proposition (6.52): (6.21)
$$\rightarrow$$
 (6.20)

Page 227, Exercise 1:
$$\Omega$$
 should be $\{re^{i\theta}: -\pi < \theta < \pi, \frac{1}{2} < r < 1\}$.

Page 229, proof of Proposition (7.1), line 7:
$$P_{\xi'}(x) \rightarrow P_{\xi'}(z)$$

Page 231, display before (7.3):
$$\partial^{\alpha} u \rightarrow \partial^{\beta} u$$

Page 233, line
$$-1$$
: $\alpha_n \leq j+1 \quad \rightarrow \quad \alpha_n \geq j+1$

Page 235, line
$$-6: (5.6) \rightarrow (7.6)$$

Page 245, line -9: Put absolute value signs around the whole sum.

Page 245, lines
$$-8$$
 and -6 : $||u||_{m,\Omega} \rightarrow ||u||_{m,\Omega}^2$

Page 248, lines 2 and 3 of section E:
$$X \rightarrow \mathfrak{X}$$

Page 272, line
$$-7$$
: distibution \rightarrow distribution

Page 273, line 9 of proof:
$$|\alpha| - m + j \rightarrow m - |\alpha| + j$$

Page 274, line 2:
$$\phi = 1$$
 on sing supp $u \rightarrow \phi = 1$ on a neighborhood of sing supp u

Page 275, Proposition 8.11(a): the set
$$\Omega - \Omega = \{x - y : x, y \in \Omega\} \rightarrow$$
 the set Ω

Page 275, proof of Prop. 8.11, line 3:
$$\Omega - \Omega \rightarrow -\Omega + x$$
 (2 places)

Page 275, proof of Prop. 8.11: Replace the material beginning with "Moreover" by the following: Moreover, if Ω is dense, then so is $-\Omega + x$. Thus, for each $x \in \Omega$, $p_2^{\vee}(x,\cdot)$ vanishes on a dense set and so vanishes identically; hence so does $p(x,\cdot)$. On the other hand, if Ω is not dense, we can take $p(x,\xi) = \psi(x)e^{-2\pi ix\cdot\xi}\widehat{\phi}(-\xi)$ where $\psi \in C_c^{\infty}(\Omega)$ and $\phi \in C_c^{\infty}(\mathbb{R}^n \setminus \Omega)$, for then $p_2^{\vee}(x,z) = \psi(x)\phi(x-z)$ and hence $p_2^{\vee}(x,x-y) = \psi(x)\phi(y) = 0$ for $x,y \in \Omega$.

Page 277, line 4:
$$D^{\alpha}\delta(x-y) \rightarrow D_x^{\alpha}\delta(x-y)$$

Page 280, line
$$-7$$
: $D_{\xi}^{\beta} \rightarrow D_{\xi}^{\alpha}$

Page 285, (8.24): Σ_a should be the closure of the set on the right side.

Page 287, line 9:
$$d\eta \rightarrow dy$$

Page 289, next-to-last line of proof of Corollary (8.32): $\Psi^{-\infty} \rightarrow S^{-\infty}$

Page 290, line 3 of proof: $u(x)v(y) \rightarrow u(y)v(x)$

Page 293, line 4: then then \rightarrow then

Page 293, last line: $2\pi i \longrightarrow \frac{1}{2\pi i}$

Page 305, line 3: and and \rightarrow and

Page 323, Huygens phenomenon and Huygens principle: 167 $\quad \rightarrow \quad 172$