ERRATA to “INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS” (2nd ed.)
G. B. Folland
Last updated March 9, 2015

Additional corrections will be gratefully received at folland@math.washington.edu.

Page 2, line −7: $a_n \rightarrow \alpha_n$
Page 3, line 1 after “Function Spaces”: dente → denote
Page 12, line 14: $e^{1/(1-t^2)} \rightarrow e^{1/(t^2-1)}$
Page 16, line 5: reamins → remains
Page 18, line −6: graddaddy → granddaddy
Page 43, second-to-last displayed equation: $\partial_t^j \rightarrow \partial^j_t$
Page 43, last displayed equation: $|\alpha_j| \rightarrow |\alpha_j|$ Page 61, Lemma 1.53: You can replace $(d/2)^k$ by d^k, and the proof is trivial. (Exercise!)
Page 69, line 2: $C^1 \rightarrow C^2$
Page 77, line −7: Insert “the final paragraph of” before “§4B.”
Page 84, line 12: (2.31) → (2.32)
Page 87, line 7: $\delta(x,y) \rightarrow \delta(x-y)$
Page 87, first line after Claim (2.38): called → called
Page 91, line 1: (2.37) → (2.40)
Page 97, second display in proof of Theorem 2.48: $\omega_{n-1} \rightarrow \omega_n$
Page 97, next line after preceding item: (2.44) → (2.46)
Page 99, line −10: $P_k\Delta P_j \rightarrow \bar{P}_k\Delta P_j$
Page 100, line −10: ser → set
Page 100, line −1: proerties → properties
Page 105, lines 9 and 14: $\frac{n-1}{r} \rightarrow \frac{n-1}{r}f'(r)$
Page 109, Exercise 5, Hint: $e^{i\theta} \rightarrow e^{ik\theta}$
Page 112, line −5: corvilinear → curvilinear
Page 118, Remark, line 2: $C^1(\overline{\Omega}) \rightarrow C^2(\overline{\Omega})$
Page 119, last line of proof of Prop. 3.6: right → left
Page 121, line −3: (3.11) → (3.10)
Page 133, Exercise 1: The asserted formula for $u(x)$ should be multiplied by R^{n-1} (including the case $n = 2$).
Page 134, Exercise 2: The integrand of the second integral should be $f(y)N(y)$.
Page 145, line 4: $K(x,t) \rightarrow K(x-x_0, t_0-t)$ (two places)
Page 150, lines 1 and 2: \(k_\psi \rightarrow \kappa_\psi \)

Page 173, formula (5.22): \(\frac{1}{1-3^{(n-1)}} \rightarrow \frac{2}{1-3^{(n-1)}} \) and \(\int_{|y|=1} \rightarrow \int_{|y|\leq 1} \)

Page 174, formula (5.24): \(\partial_t u - \Delta u \rightarrow \partial_2^2 u - \Delta u \)

Page 175, line 4 and line -3: \(\partial_t v - \Delta v \rightarrow \partial_2^2 v - \Delta v \)

Page 177, line -6: \(\partial_t \tilde{u}(\xi, t) \rightarrow \partial_t \tilde{u}(\xi, 0) \)

Page 192, line 9: if \(\rightarrow \) of

Page 194, line 3 of Proof: \(\|f\|_s \rightarrow C\|f\|_s \)

Page 201, lines 9 and 11: \(f_{kj} \rightarrow \hat{f}_{kj} \)

Page 203, line -8: \((1 + t^2)^{(s-1)/2} \rightarrow (1 + t^2)^{(s-1)/2} \)

Page 204, line -4: \(u \rightarrow f \)

Page 205, lines 5, 7, and 8: \(u \rightarrow f \)

Page 207, line 2: \(\|\phi\|_{s-x} \rightarrow \|\phi\|_{s+x} \)

Page 208, line 6: There should be no restriction on the support of \(g \) in this formula. However, let \(\phi \) be a function in \(C^\infty_c(\Theta^{-1}(\Omega')_0) \) with \(\phi = 1 \) on \(\Theta^{-1}(\Omega')_0 \); then \(\int (f \circ \Theta) \hat{g} = \int (f \circ \Theta) \phi \hat{g} \), so one can replace \(g \) by \(\phi g \) in the subsequent argument. Since the map \(g \mapsto \phi g \) is bounded on \(H_s \) for all \(s \), this yields the desired estimate in the end.

Page 208, line -5: any \(\rightarrow \) any

Page 210, formula (6.27): \(|\alpha| \leq k \rightarrow |\alpha| = k \)

Page 212, lines 9 and 10: \(|\alpha| \leq k \rightarrow |\alpha| = k \)

Page 218, line 2: \((6.30) \rightarrow (6.33) \)

Page 224, line 8: \(\int_N (r) \rightarrow \int_{N(r)} \)

Page 225, line 1: if \(\rightarrow \) of

Page 225, Theorem (6.47): \(S \rightarrow \partial \Omega \) (two places)

Page 227, Exercise 1: \(\Omega \) should be \(\{ re^{i\theta} : -\pi < \theta < \pi, \frac{1}{2} < r < 1 \} \).

Page 231, display before (7.3): \(\partial^\alpha u \rightarrow \partial^\beta u \)

Page 235, line -6: \((5.6) \rightarrow (7.6) \)

Page 245, line -9: Put absolute value signs around the whole sum.

Page 245, lines -8 and -6: \(\|u\|_{m, \Omega} \rightarrow \|u\|_{m, \Omega}^2 \)

Page 248, lines 2 and 3 of section E: \(X \rightarrow \mathcal{X} \)

Page 272, line -7: distribution \(\rightarrow \) distribution

Page 273, line 9 of proof: \(|\alpha| - m + j \rightarrow m - |\alpha| + j \)

Page 280, line -7: \(D^\beta_\xi \rightarrow D^\alpha_\xi \)

Page 287, line 9: \(d\eta \rightarrow dy \)
Page 289, next-to-last line of proof of Corollary (8.32): $\Psi^{-\infty} \rightarrow S^{-\infty}$

Page 290, line 3 of proof: $u(x)v(y) \rightarrow u(y)v(x)$

Page 293, line 4: then then \rightarrow then

Page 305, line 3: and and \rightarrow and