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Often one is faced with the evaluation of limits of quotients f(x)/g(x) where f and g
both tend to zero or infinity. The collection of related results that go under the name of
“l’Hôpital’s rule” enable one to evaluate such limits in many cases by examining the quotient
of the derivatives, f ′(x)/g′(x). These results are all applications of the generalized mean-
value theorem (Theorem 5.12 in Apostol).

The cases involving the indeterminate form 0/0 can be summarized as follows.

Theorem 1 (L’Hôpital’s Rule I). Suppose f and g are differentiable functions on (a, b) and

lim
x→a+

f(x) = lim
x→a+

g(x) = 0.

If g′ never vanishes on (a, b) and the limit

lim
x→a+

f ′(x)

g′(x)
= L

exists, then g never vanishes on (a, b) and

lim
x→a+

f(x)

g(x)
= L.

The same result holds for
• the left-hand limit limx→a−, if f and g are differentiable on an interval (d, a),
• the two-sided limit limx→a, if f and g are differentiable on intervals (d, a) and (a, b), and
• the limit limx→∞ or limx→−∞, if f and g are differentiable on an interval (b,∞) or

(−∞, b).

Proof. If we (re)define f(a) and g(a) to be 0, then f and g are continuous on the interval [a, x]
for x < b. By the ordinary mean value theorem, if x ∈ (a, b) we have g(x) = g(x)− g(a) =
g′(c)(x−a) for some c ∈ (a, x), and g′(c) 6= 0 by assumption, so g(x) 6= 0. By the generalized
mean-value theorem, for each x ∈ (a, b) there exists c ∈ (a, x) (depending on x) such that

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)
.

Since c ∈ (a, x), c approaches a+ as x does, so

lim
x→a+

f(x)

g(x)
= lim

c→a+

f ′(c)

g′(c)
= L.

The proof for left-hand limits is similar, and the case of two-sided limits is obtained by
combining right-hand and left-hand limits. Finally, for the case a = ±∞, we set y = 1/x
and consider the functions F (y) = f(1/y) and G(y) = g(1/y). Since F ′(y) = −f ′(1/y)/y2
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and G′(y) = −g′(1/y)/y2, we have F ′(y)/G′(y) = f ′(1/y)/g′(1/y), so by the results just
proved,

lim
x→±∞

f(x)

g(x)
= lim

y→0±

F (y)

G(y)
= lim

y→0±

F ′(y)

G′(y)
= lim

x→±∞

f ′(x)

g′(x)
.

Under the conditions of this theorem, it may well happen that f ′(x) and g′(x) tend to
zero also, so that the limit of f ′(x)/g′(x) cannot be evaluated immediately. In this case we
can apply the theorem again to evaluate the limit by examining f ′′(x)/g′′(x). More generally,
if the functions f, f ′, . . . , f (k−1), g, g′, . . . , g(k−1) all tend to zero as x tends to a+ or a− or
±∞, but f (k)(x)/g(k)(x)→ L, then f(x)/g(x)→ L.

Example. Let f(x) = 2x− sin 2x, g(x) = x2 sinx, a = 0. Then f , g, and their first two
derivatives vanish at x = a, but the third derivatives do not, so

lim
x→0

2x− sin 2x

x2 sinx
= lim

x→0

2− 2 cos 2x

2x sinx+ x2 cosx
= lim

x→0

4 sin 2x

(2− x2) sinx+ 4x cosx

= lim
x→0

8 cos 2x

(6− x2) cosx− 6x sinx
=

4

3
.

The corresponding result for limits of the form ∞/∞ is also true.

Theorem 2 (L’Hôpital’s Rule II). Theorem 1 remains valid when the hypothesis that
lim f(x) = lim g(x) = 0 (as x → a+, x → a−, etc.) is replaced by the hypothesis that
lim |f(x)| = lim |g(x)| =∞.

Proof. We consider the case of left-hand limits as x → a−; the other cases follow as in
Theorem 1.

Given ε > 0, we wish to show that
∣∣[f(x)/g(x)] − L

∣∣ < ε provided that x is sufficiently
close to a on the left. Since f ′(x)/g′(x)→ L and |g(x)| → ∞, we can choose x0 < a so that∣∣∣∣f ′(x)

g′(x)
− L

∣∣∣∣ < ε

2
and g(x) 6= 0 for x0 < x < a.

Moreover, by the generalized mean value theorem, if x0 < x < a we have

f(x)− f(x0)

g(x)− g(x0)
=
f ′(c)

g′(c)
for some c ∈ (x0, x),

and hence, since x0 < c < a,∣∣∣∣f(x)− f(x0)

g(x)− g(x0)
− L

∣∣∣∣ < ε

2
for x0 < x < a. (*)
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Next, we have

f(x)− f(x0)

g(x)− g(x0)
=

f(x)

g(x)
− f(x0)

g(x)

1− g(x0)

g(x)

,

by dividing top and bottom by g(x). Solving this equation for the fraction f(x)/g(x) yields

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
− f(x)− f(x0)

g(x)− g(x0)

g(x0)

g(x)
+
f(x0)

g(x)
. (**)

Since |g(x)| → ∞ as x→ a, the quotients f(x0)/g(x) and g(x0)/g(x) tend to zero as x→ a,
and by (*) the difference quotient remains bounded, so the second two terms on the right of
(**) tend to zero. Hence, for x sufficiently close to a we have∣∣∣∣f(x)

g(x)
− f(x)− f(x0)

g(x)− g(x0)

∣∣∣∣ < ε

2
.

Combining this with (*), we obtain ∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ < ε,

which is what we needed to show.

The following special cases of Theorem 2 are of fundamental importance.

Corollary 1. For any a > 0 we have

lim
x→+∞

xa

ex
= lim

x→+∞

log x

xa
= lim

x→0+

log x

x−a
= 0.

That is, the exponential function ex grows more rapidly than any power of x as x → +∞,
whereas | log x| grows more slowly than any positive power of x as x→ +∞ and more slowly
than any negative power of x as x→ 0+.

Proof. For the first limit, let k be the smallest integer that is ≥ a. A k-fold application of
Theorem 2 yields

lim
x→+∞

xa

ex
= lim

x→+∞

a(a− 1) · · · (a− k + 1)xa−k

ex
,

and the latter limit is zero because a− k ≤ 0. For the other two limits, a single application
of Theorem 2 suffices:

lim
x→+∞

log x

xa
= lim

x→+∞

1

axa
= 0, lim

x→0+

log x

x−a
= lim

x→0+

xa

a
= 0.

By raising the quantities in Corollary 1 to a positive power b and replacing a by a/b, we
obtain a more general result:

Corollary 2. For a, b > 0 we have lim
x→+∞

xa

ebx
= lim

x→+∞

(log x)b

xa
= lim

x→0+

| log x|b

x−a
= 0.
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