Homework due - Wednesday, February 20, 2008

1. From (Chapter 9) page 181 of the Course notes (called chapters on the course web page), complete the following exercises:

- Exercise 1
- Exercise 2
- Exercise 3
- Exercise 4

2. Suppose you are given the values of f and f^{\prime} at points $x_{0}+h$ and $x_{0}-h$ and you wish to approximate $f^{\prime}\left(x_{0}\right)$. Find coefficients α and β that make the following approximation accurate to $O\left(h^{4}\right)$:

$$
f^{\prime}\left(x_{0}\right) \approx \alpha \frac{f^{\prime}\left(x_{0}+h\right)+f^{\prime}\left(x_{0}-h\right)}{2}+\beta \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}
$$

Compute the coefficients by combining the Taylor series expansions of $f(x)$ and $f^{\prime}(x)$ about the point x_{0} :

$$
\begin{aligned}
f(x)= & f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} f^{\prime \prime \prime}\left(x_{0}\right) \\
& +\frac{\left(x-x_{0}\right)^{4}}{4!} f^{(4)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{5}}{5!} f^{(5)}\left(c_{1}\right) \\
f^{\prime}(x)= & f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} f^{(4)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{4}}{4!} f^{(5)}\left(c_{2}\right)
\end{aligned}
$$

Hint: Combine the Taylor expansions into $\left(f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right)$ and $\left(f^{\prime}\left(x_{0}+h\right)+f^{\prime}\left(x_{0}-\right.\right.$ $h)$) and then combine these two to cancel the leading order error term (in this case $O\left(h^{2}\right)$).
Note: This technique for computing derivatives is useful for interpolating between points where a function and its derivative are known.

