Ranking Web Pages

Tim Chartier and Anne Greenbaum

Department of Mathematics @

W

Winter 2008

H
Y
\
Tim Chartier and Anne Greenbaum Ranking Web Pages

@ Have a question? Looking for an old friend? Need a
reference for a paper? A popular and often effective form
of information acquisition is submitting queries to
Google.com.

@ In fact, in January 2003 just over 1,200 searches would
have been conducted in the past second.

@ “Google” is a play on the word “googol,” the number 10,
reflecting the company'’s goal of organizing all information
on the World Wide Web.

Google

=

Tim Chartier and Anne Greenbaum Ranking Web Pages

Google-ing Math

@ Suppose that we submit the query mathematics to
Google.

@ Why is the page we see at the top of the list deemed the
“best” page related to the query?

@ The web page listed first by Google is deemed, loosely
speaking, the best web page related to the query.

@ How is this page given such distinction?

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

The PageRank algorithm

@ Developed by Google’s founders, Larry Page and Sergey
Brin, who were graduate students at Stanford University
when the foundational ideas of Google developed.

@ Google ranks webpages according to the percentage of
time one would end up at each web on a random walk

through the web.

math

1
Tim Chartier and Anne Greenbaum Ranking Web Pages

Return to Monte Carlo

Let’s return to Monte Carlo simulation to mathematically model
such a random walk through a web network.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Surf over mini—web

@ Assume we start at web page 1.

@ We will assume that at each stage the surfer will randomly
follow one of the links on the page. The surfer can choose
any link with equal probability.

3
N T
i

Tim Chartier and Anne Greenbaum Ranking Web Pages

Adjacency matrix

@ We will represent the structure of a network with a matrix.
@ The adjacency matrix for the network below is:

0

OO0OOrrOo
OOoOPr oo

Or P OOoOOo
R OOO0OOoOLR
OOPr OOOo
Or OO0 OO

g
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Your Turn

@ From the course webpage found at:
http://www.math.washington.edu/ ~greenbau
download googleSim1.m

@ Find the PageRank of the system.
@ Experiment with altering networks and viewing the results.

@ How many iterates do you need to distinguish the rankings
of the various webpages?

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

http://www.math.washington.edu/~greenbau

What about Google?

WAITS

@ Google indexes billions of webpages.
@ How is PageRank found by Google?

=

Tim Chartier and Anne Greenbaum Ranking Web Pages

Getting Stochastic

@ Form a stochastic matrix M from our adjacency matrix.

@ That s, element m; gives the probability of a surfer visit
webpage j from webpage i, which implies

mjj = gij/zgij-
j

@ Therefore for

O O0OORPEF

OO Pr OO

OkFr P, OOOo
O OO0OOoOLPRr
OO PFr O0OO0o
OFrr OOO0OOo
OO OFrPrFro
O OQwrr O O O
OoNkFwFkF O O O
PO OOOR
O QOQwrrO O O
QN O O O O

1
Tim Chartier and Anne Greenbaum Ranking Web Pages

@ Note that G is sparse.

@ Recall the size of n. The sparsity of G will be an asset in
manipulating it on a computer.

@ In particular, only the nonzero entries, along with column
and row information, are stored for large sparse matrices.

@ Because the average out-degree of pages on the web is
about seven [Kleinberg et al. 1999], this saves a factor on
the order of half a billion in storage space and since n is
growing over time while the average number of links on
each page appear to remain about constant, the savings
will only increase over time.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

@ Now, let’s start our random walk at state 1.

@ What is the probability that we land at web page i after one
step?

@ While trivial to compute, we can also find this with our
transition matrix.

@ First, we represent our initial state by the vector
v=(10 0 0 0)

@ Simply computevM = (0 0 0 1 0).

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

@ Now, let's take another step.
@ Compute v, =viM = (O 0.33 0.33 0 0.33 O)

@ Your Turn

Find vs.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

@ Now, let's take another step.
@ Compute v, =viM = (O 0.33 0.33 0 0.33 O)

@ Your Turn

Find vs.
Answer vz =v,M = (0.67 0 0.17 0 0 0.17)

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Lotsa steps

@ An important observation should be made about the
matrix-vector multiplication. In particular,

Vg = VvzM
= (VzM)M
= V2|V|2
= (viM)M?
= V1M3
= (VvM)M3
= vM4,

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Lotsa steps

@ An important observation should be made about the
matrix-vector multiplication. In particular,

Vg = VvzM
= (VzM)M
= V2|V|2
= (viM)M?
= V1M3
= (VvM)M3
= vM4,

@ Therefore, we can easily find say vi99. Compute
vM1% = (0.263 0.105 0.158 0.316 0.105 0.053)

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Marathon of steps

@ Your Turn Find vsqo.
@ Your Turn Find v7qg.

@ What do you notice?

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Marathon of steps

@ Your Turn Find vsqo.
@ Your Turn Find v7qg.
@ What do you notice?

@ To three decimal places,
VM700 — M500 — \/\100
= (0.263 0.105 0.158 0.316 0.105 0.053)
1

Google’s Eigenvectors

@ A non-negative vector that satisfies vM = v is called a
steady-state vector of the Markov process (where v is
normalized such that) v; = 1, which results in a vector of
probabilities).

@ For us, it is important to note that this is a left-eigenvector
of the matrix M. That is, vM = v.

@ Did you notice that we were just using the Power Method to
find v?

@ However, notice that we didn’t need, at least in that
example, to normalize the vector at each step.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

PageRank is a vector!

@ Google defines the PageRank of page i to be v;.

@ Therefore, the largest element of v corresponds to the
page with the highest PageRank, the second largest to the
page with the second highest PageRank, and so on.

@ The limiting frequency that an infinitely dedicated random
surfer visits any particular page is that page’s PageRank.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

MATLAB'’s search

@ The following will implement the Power Method to find the
PageRank vector.

iterates = O;
while max(abs(vNew-v)) > .001
v = vNew;
vNew = v+M;
iterates = iterates + 1;
end

@ The full code can be found also on the course webpage as
googlePower.m

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Catching another wave

@ Let's surf again.
@ Adapt googlePower.m for the network below.

./

=

Tim Chartier and Anne Greenbaum Ranking Web Pages

Dangling node

@ Note, web page 6 is what is called a dangling node with no
outlinks. What web pages have this behavior?

@ What problem did you see with our current model?

@ Ideas to fix it? Let's see if we can come up with the one of
Brin and Page that lies deep within Google’s algorithm.

./

=

Tim Chartier and Anne Greenbaum Ranking Web Pages

Revised random surfing

The rules to our Monte Carlo “game” are now:

@ Again, restrict ourselves only to indexed web pages.

@ Assume that for p = 0.85 or 85% of the time a surfer
follows a link that is available on the current web page that
the surfer is visiting. The other 15% of the time the surfer
randomly visits (with equal probability) any web page
available in the network.

&-;‘@K v

=

Tim Chartier and Anne Greenbaum Ranking Web Pages

It's element-ary

@ Letr; denote the row sum of row i.
@ Therefore, the transition matrix M has elements

P<%>+lp, r#0
1

l n
— r =0.

)

n

m; =

@ Again, p = 0.85.
@ This model creates a transition matrix that is often called
the Google matrix.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Forming the Transition Matrix

@ Therefore for our problem the adjacency matrix is:

000100
100000
c_| 100000
011010
001001
000000

@ The first row of the transition matrix M is

(15/6 .15/6 .15/6 .85+.15/6 .15/6 .15/6).

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Forming the Transition Matrix, cont.

@ Again,

@ Therefore, the Google matrix is

0.0250
0.8750
0.8750
0.0250
0.0250
0.1667

Tim Chartier and Anne Greenbaum Ranking Web Pages

(Nl il e

0

0.0250
0.0250
0.0250
0.3083
0.0250
0.1667

Or OO0OO0O

0

PP, OOO

0

[cNeoNolNelNoll

0.0250
0.0250
0.0250
0.3083
0.4500
0.1667

O OPFr OO0OOo
O OO0OO0OO0O

0.8750
0.0250
0.0250
0.0250
0.0250
0.1667

0.0250
0.0250
0.0250
0.3083
0.0250
0.1667

0.0250
0.0250
0.0250
0.0250
0.4500
0.1667

it

Rankings

@ If you enter M into googlePower.m the algorithm will
converge to:

(0.2680 0.1117 0.1594 0.2644 0.1117 0.0846)

@ Therefore, page 1 has the best ranking followed by page 4.
Compare this to the network.

./

=

Tim Chartier and Anne Greenbaum Ranking Web Pages

Existence and unigueness

@ If this vector is not unique, which one would you choose?
Would you bid between companies for which one to
choose?

@ The following theorem [Lax 1997] guarantees the
unigueness of the steady-state vector and that it will have
positive entries:

Theorem (Perron) Every real square matrix P who
entries are all positive has a unique eigenvector with
all positive entries, its corresponding eigenvalue has
multiplicity one, and it is the dominant eigenvalue, in
that every other eigenvalue has strictly smaller mag-
nitude.

Tim Chartier and Anne Greenbaum Ranking Web Pages

Stochastic matrices

@ Recall that the rows of M sum to 1. Therefore, M1 =1,
where 1 is the column vector of all ones. Thatis, 1is a
right eigenvector of M associated with the eigenvalue 1,
most notably for our purposes having all positive entries.

@ Perron’s Theorem ensures that 1 is the unique right
eigenvector with all positive entries, and hence its
eigenvalue must be the dominant one.

@ The right and left eigenvalues of a matrix are the same,
therefore 1 is the dominant left eigenvalue as well. So,
there exists a unique steady-state vector v that satisfies
vM = v. Normalizing this eigenvector so that > v; =1
gives a steady-state vector.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Your Turn!

@ Itis time to experiment and play. Indeed, we will become
Google search engines (simple ones) ourselves.

@ To search from a homepage, you will type a statement like:
[U,G] = surfer(’http://www.xxx.zzz’,n)

@ This starts at the given URL and tries to surf the Web until
it has visited n pages. That is, an n by n matrix is formed.

@ Note, surfing can cause problems and as such you may
even have to terminate MATLAB. Yet, nonetheless we can
create our own PageRank example.

H
il !
i}
Tim Chartier and Anne Greenbaum Ranking Web Pages

Google-time!

@ Download surfer.m , pagerank.m and pagerankpow.m
from the course webpage. Note, this version of the Power
Method only uses G and does not use the transition matrix
M.

@ These codes were written by Cleve Moler although
pagerank.m is an adapted version of Cleve’s codes.

@ Let's begin with www.washington.edu as our starting URL.
Let's only visit 20 pages. Therefore type:

[U,G] = surfer(http://www.washington.edu’,20);
@ U = a cell array of n strings, the URLs of the nodes.
@ G = an n-by-n sparse matrix with G(i,j) = 1 if node j is
linked to node i.

@ Type: pagerank and the pagerank will be computed.

@ Note: The program hangs sometimes and requires
breaking from the program (CTRL-C) or shutting down
MATLAB altogether. T

Tim Chartier and Anne Greenbaum Ranking Web Pages

