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Google

Have a question? Looking for an old friend? Need a
reference for a paper? A popular and often effective form
of information acquisition is submitting queries to
Google.com.

In fact, in January 2003 just over 1,200 searches would
have been conducted in the past second.

“Google” is a play on the word “googol,” the number 10100,
reflecting the company’s goal of organizing all information
on the World Wide Web.
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Google-ing Math

Suppose that we submit the query mathematics to
Google.

Why is the page we see at the top of the list deemed the
“best” page related to the query?

The web page listed first by Google is deemed, loosely
speaking, the best web page related to the query.

How is this page given such distinction?
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The PageRank algorithm

Developed by Google’s founders, Larry Page and Sergey
Brin, who were graduate students at Stanford University
when the foundational ideas of Google developed.

Google ranks webpages according to the percentage of
time one would end up at each web on a random walk
through the web.
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Return to Monte Carlo

Let’s return to Monte Carlo simulation to mathematically model
such a random walk through a web network.
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Surf over mini–web

Assume we start at web page 1.

We will assume that at each stage the surfer will randomly
follow one of the links on the page. The surfer can choose
any link with equal probability.
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Adjacency matrix

We will represent the structure of a network with a matrix.

The adjacency matrix for the network below is:

G =

















0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
















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Your Turn

From the course webpage found at:
http://www.math.washington.edu/ ˜ greenbau
download googleSim1.m .

Find the PageRank of the system.

Experiment with altering networks and viewing the results.

How many iterates do you need to distinguish the rankings
of the various webpages?
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What about Google?

Google indexes billions of webpages.

How is PageRank found by Google?
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Getting Stochastic

Form a stochastic matrix M from our adjacency matrix.

That is, element mij gives the probability of a surfer visit
webpage j from webpage i , which implies

mij = gij/
∑

j

gij .

Therefore for

G =

















0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0

















, M =

















0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1

3
1
3 0 1

3 0
0 0 1

2 0 0 1
2

0 0 0 1 0 0
















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Sparse is Nice

Note that G is sparse.

Recall the size of n. The sparsity of G will be an asset in
manipulating it on a computer.

In particular, only the nonzero entries, along with column
and row information, are stored for large sparse matrices.

Because the average out-degree of pages on the web is
about seven [Kleinberg et al. 1999], this saves a factor on
the order of half a billion in storage space and since n is
growing over time while the average number of links on
each page appear to remain about constant, the savings
will only increase over time.
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And?

Now, let’s start our random walk at state 1.

What is the probability that we land at web page i after one
step?

While trivial to compute, we can also find this with our
transition matrix.

First, we represent our initial state by the vector

v =
(

1 0 0 0 0
)

Simply compute vM =
(

0 0 0 1 0
)

.
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Two step

Now, let’s take another step.

Compute v2 = v1M =
(

0 0.33 0.33 0 0.33 0
)

Your Turn

Find v3.
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Two step

Now, let’s take another step.

Compute v2 = v1M =
(

0 0.33 0.33 0 0.33 0
)

Your Turn

Find v3.

Answer v3 = v2M =
(

0.67 0 0.17 0 0 0.17
)
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Lotsa steps

An important observation should be made about the
matrix-vector multiplication. In particular,

v4 = v3M
= (v2M)M
= v2M2

= (v1M)M2

= v1M3

= (vM)M3

= vM4.
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Lotsa steps

An important observation should be made about the
matrix-vector multiplication. In particular,

v4 = v3M
= (v2M)M
= v2M2

= (v1M)M2

= v1M3

= (vM)M3

= vM4.

Therefore, we can easily find say v100. Compute
vM100 =

(

0.263 0.105 0.158 0.316 0.105 0.053
)
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Marathon of steps

Your Turn Find v500.

Your Turn Find v700.

What do you notice?
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Marathon of steps

Your Turn Find v500.

Your Turn Find v700.

What do you notice?

To three decimal places,

vM700 = vM500 = vM100

=
(

0.263 0.105 0.158 0.316 0.105 0.053
)
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Google’s Eigenvectors

A non-negative vector that satisfies vM = v is called a
steady-state vector of the Markov process (where v is
normalized such that

∑

v i = 1, which results in a vector of
probabilities).

For us, it is important to note that this is a left-eigenvector
of the matrix M. That is, vM = v.

Did you notice that we were just using the Power Method to
find v?

However, notice that we didn’t need, at least in that
example, to normalize the vector at each step.
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PageRank is a vector!

Google defines the PageRank of page i to be v i .

Therefore, the largest element of v corresponds to the
page with the highest PageRank, the second largest to the
page with the second highest PageRank, and so on.

The limiting frequency that an infinitely dedicated random
surfer visits any particular page is that page’s PageRank.
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MATLAB’s search

The following will implement the Power Method to find the
PageRank vector.

iterates = 0;
while max(abs(vNew-v)) > .001

v = vNew;
vNew = v* M;
iterates = iterates + 1;

end

The full code can be found also on the course webpage as
googlePower.m .
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Catching another wave

Let’s surf again.

Adapt googlePower.m for the network below.
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Dangling node

Note, web page 6 is what is called a dangling node with no
outlinks. What web pages have this behavior?
What problem did you see with our current model?
Ideas to fix it? Let’s see if we can come up with the one of
Brin and Page that lies deep within Google’s algorithm.
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Revised random surfing

The rules to our Monte Carlo “game” are now:

Again, restrict ourselves only to indexed web pages.

Assume that for p = 0.85 or 85% of the time a surfer
follows a link that is available on the current web page that
the surfer is visiting. The other 15% of the time the surfer
randomly visits (with equal probability) any web page
available in the network.
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It’s element-ary

Let ri denote the row sum of row i .

Therefore, the transition matrix M has elements

mij =











p
(

gij

ri

)

+
1 − p

n
, ri 6= 0

1
n

, ri = 0.

Again, p = 0.85.

This model creates a transition matrix that is often called
the Google matrix.
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Forming the Transition Matrix

Therefore for our problem the adjacency matrix is:

G =

















0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0

















.

The first row of the transition matrix M is
(

.15/6 .15/6 .15/6 .85 + .15/6 .15/6 .15/6
)

.
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Forming the Transition Matrix, cont.

Again,

G =

















0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0

















.

Therefore, the Google matrix is

M =

















0.0250 0.0250 0.0250 0.8750 0.0250 0.0250
0.8750 0.0250 0.0250 0.0250 0.0250 0.0250
0.8750 0.0250 0.0250 0.0250 0.0250 0.0250
0.0250 0.3083 0.3083 0.0250 0.3083 0.0250
0.0250 0.0250 0.4500 0.0250 0.0250 0.4500
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
















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Rankings

If you enter M into googlePower.m the algorithm will
converge to:

(

0.2680 0.1117 0.1594 0.2644 0.1117 0.0846
)

Therefore, page 1 has the best ranking followed by page 4.
Compare this to the network.
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Existence and uniqueness

If this vector is not unique, which one would you choose?
Would you bid between companies for which one to
choose?

The following theorem [Lax 1997] guarantees the
uniqueness of the steady-state vector and that it will have
positive entries:

Theorem (Perron) Every real square matrix P who
entries are all positive has a unique eigenvector with
all positive entries, its corresponding eigenvalue has
multiplicity one, and it is the dominant eigenvalue, in
that every other eigenvalue has strictly smaller mag-
nitude.
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Stochastic matrices

Recall that the rows of M sum to 1. Therefore, M1 = 1,
where 1 is the column vector of all ones. That is, 1 is a
right eigenvector of M associated with the eigenvalue 1,
most notably for our purposes having all positive entries.

Perron’s Theorem ensures that 1 is the unique right
eigenvector with all positive entries, and hence its
eigenvalue must be the dominant one.

The right and left eigenvalues of a matrix are the same,
therefore 1 is the dominant left eigenvalue as well. So,
there exists a unique steady-state vector v that satisfies
vM = v. Normalizing this eigenvector so that

∑

v i = 1
gives a steady-state vector.

Tim Chartier and Anne Greenbaum Ranking Web Pages



Your Turn!

It is time to experiment and play. Indeed, we will become
Google search engines (simple ones) ourselves.

To search from a homepage, you will type a statement like:
[U,G] = surfer(’http://www.xxx.zzz’,n) .

This starts at the given URL and tries to surf the Web until
it has visited n pages. That is, an n by n matrix is formed.

Note, surfing can cause problems and as such you may
even have to terminate MATLAB. Yet, nonetheless we can
create our own PageRank example.
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Google-time!

Download surfer.m , pagerank.m and pagerankpow.m
from the course webpage. Note, this version of the Power
Method only uses G and does not use the transition matrix
M.
These codes were written by Cleve Moler although
pagerank.m is an adapted version of Cleve’s codes.
Let’s begin with www.washington.edu as our starting URL.
Let’s only visit 20 pages. Therefore type:

[U,G] = surfer(’http://www.washington.edu’,20);
U = a cell array of n strings, the URLs of the nodes.
G = an n-by-n sparse matrix with G(i, j) = 1 if node j is
linked to node i.

Type: pagerank and the pagerank will be computed.
Note : The program hangs sometimes and requires
breaking from the program (CTRL-C) or shutting down
MATLAB altogether.
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