Richardson's Extrapolation

Tim Chartier and Anne Greenbaum

Department of Mathematics @
W
Winter 2008

Approximating the Second Derivative

- From last time, we derived that:

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

the truncation error is $O\left(h^{2}\right)$.

- Further, rounding error analysis predicts rounding errors of size about ϵ / h^{2}.
- Therefore, the smallest total error occurs when h is about $\epsilon^{1 / 4}$ and then the truncation error and the rounding error are each about $\sqrt{\epsilon}$.
- With machine precision $\epsilon \approx 10^{-16}$, this means that h should not be taken to be less than about 10^{-4}.

Numerical Derivatives on MATLAB

- In order to actively see the rounding effects in the second order approximation, let us use MATLAB.
- You will find the following MATLAB code on the course webpage:

```
f = inline('sin(x)');
fppTrue = inline('-sin(x)');
h = 0.1;
x = pi/3;
```

fprintf(' \quad Abs. Error n^{\prime});
fprintf (' $=========================$ n $^{\prime}$);
for $i=1: 6$
$\mathrm{fpp}=(\mathrm{f}(\mathrm{x}+\mathrm{h})-2 \star \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-\mathrm{h})) / \mathrm{h}^{\wedge} 2$;
fprintf(' \% .le $\% 8.1 e \backslash n^{\prime}, h, a b s(f p p-f p p T r u e(x))$)
$\mathrm{h}=\mathrm{h} / 10$;
end

Rounding errors in action

This MATLAB code produces the following table:

h	Abs. Error
$========================$	
$1.0 e-001$	$7.2 e-004$
$1.0 e-002$	$7.2 e-006$
$1.0 e-003$	$7.2 e-008$
$1.0 e-004$	$3.2 e-009$
$1.0 e-005$	$3.7 e-007$
$1.0 e-006$	$5.1 e-005$

Your Turn

- Download the code secondDeriv.m from the course web page.
- Edit the code such that it approximates the second derivative of $f(x)=x^{3}-2 * x^{2}+x$ at the point $x=1$.
- Again, let your initial $h=0.1$.
- After running the code change x from $x=1$ to $x=1000$. What do you notice?

Rounding errors again

- Your code should have changed the inline functions to the following:

$$
\begin{aligned}
& \left.f=\text { inline (' } x^{\wedge} 3-2 * x^{\wedge} 2+x^{\prime}\right) ; \\
& \text { fppTrue }=\text { inline }\left({ }^{\prime} 6 * x-4^{\prime}\right) ;
\end{aligned}
$$

- This MATLAB code produces the following table:

h	Abs. Error
$========================$	
$1.0 \mathrm{e}-001$	$7.2 \mathrm{e}-004$
$1.0 \mathrm{e}-002$	$7.2 \mathrm{e}-006$
$1.0 \mathrm{e}-003$	$7.2 \mathrm{e}-008$
$1.0 \mathrm{e}-004$	$3.2 \mathrm{e}-009$
$1.0 \mathrm{e}-005$	$3.7 \mathrm{e}-007$
$1.0 \mathrm{e}-006$	$5.1 \mathrm{e}-005$

- How small h can be depends on the size of x.

Recognizing Error Behavior

- Last time we also saw that Taylor Series of f about the point x and evaluated at $x+h$ and $x-h$ leads to the central difference formula:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)-\cdots .
$$

- This formula describes precisely how the error behaves.
- This information can be exploited to improve the quality of the numerical solution without ever knowing $f^{\prime \prime \prime}, f^{(5)}, \ldots$.
- Recall that we have a $O\left(h^{2}\right)$ approximation.

Exploiting Knowledge of Higher Order Terms

- Let us rewrite this in the following form:

$$
f^{\prime}\left(x_{0}\right)=N(h)-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)-\cdots,
$$

where $N(h)=\frac{f(x+h)-f(x-h)}{2 h}$.

- The key of the process is to now replace h by $h / 2$ in this formula.

Complete this step:

Canceling Higher Order Terms

Therefore, you find

$$
f^{\prime}\left(x_{0}\right)=N\left(\frac{h}{2}\right)-\frac{h^{2}}{24} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{1920} f^{(5)}\left(x_{0}\right)-\cdots .
$$

Look closely at what we had from before:

$$
f^{\prime}\left(x_{0}\right)=N(h)-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)-\cdots .
$$

Careful substraction cancels a higher order term.

$$
\begin{aligned}
& 4 f^{\prime}\left(x_{0}\right)=4 N\left(\frac{h}{2}\right)-4 \frac{h^{2}}{24} f^{\prime \prime \prime}\left(x_{0}\right)-4 \frac{h^{4}}{1920} f^{(5)}\left(x_{0}\right)-\cdots \\
& -f^{\prime}\left(x_{0}\right)=-N(h)+\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)+\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)+\cdots \\
& \hline 3 f^{\prime}\left(x_{0}\right)=4 N\left(\frac{h}{2}\right)-N(h)
\end{aligned}
$$

A Higher Order Method

- Thus,

$$
f^{\prime}\left(x_{0}\right)=N\left(\frac{h}{2}\right)+\frac{N(h / 2)-N(h)}{3}+\frac{h^{4}}{160} f^{(5)}\left(x_{0}\right)+\cdots
$$

is a $O\left(h^{4}\right)$ formula.

- Notice what we have done. We took two $O\left(h^{2}\right)$ approximations and created a $O\left(h^{4}\right)$ approximation.
- We did require, however, that we have functional evaluations at h and $h / 2$.
- Again, we have the $O\left(h^{4}\right)$ approximation:

$$
f^{\prime}\left(x_{0}\right)=N\left(\frac{h}{2}\right)+\frac{N(h / 2)-N(h)}{3}+\frac{h^{4}}{160} f^{(5)}\left(x_{0}\right)+\cdots .
$$

- This approximation requires roughly twice as much work as the second order centered difference formula.
- However, but the truncation error now decreases much faster with h.
- Moreover, the rounding error can be expected to be on the order of ϵ / h, as it was for the centered difference formula, so the greatest accuracy will be achieved for $h^{4} \approx \epsilon / h$, or, $h \approx \epsilon^{1 / 5}$, and then the error will be about $\epsilon^{4 / 5}$.
- Consider $f(x)=x \exp (x)$ with $x_{0}=2.0$ and $h=0.2$. Use the central difference formula to the first derivative and Richardson's Extrapolation to give an approximation of order $O\left(h^{4}\right)$.
- Recall $N(h)=\frac{f(x+h)-f(x-h)}{2 h}$.
- Therefore, $N(0.2)=22.414160$.
- What do we evaluate next?

$$
N(\quad)=
$$

- Consider $f(x)=x \exp (x)$ with $x_{0}=2.0$ and $h=0.2$. Use the central difference formula to the first derivative and Richardson's Extrapolation to give an approximation of order $O\left(h^{4}\right)$.
- Recall $N(h)=\frac{f(x+h)-f(x-h)}{2 h}$.
- Therefore, $N(0.2)=22.414160$.
- What do we evaluate next?

$$
N(\quad)=
$$

- We find $N(h / 2)=N(0.1)=22.228786$.

Example cont.

- Therefore, our higher order approximation is

Example cont.

- Therefore, our higher order approximation is
- In particular, we find the approximation:

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =N\left(\frac{h}{2}\right)+\frac{N(h / 2)-N(h)}{3} \\
& =N(0.1)+\frac{N(0.1)-N(0.2)}{3} \\
& =22.1670
\end{aligned}
$$

- Note, $f^{\prime}(x)=x \exp (x)+\exp (x)$, so $f^{\prime}(x)=22.1671$ to four decimal places.
- You should find that from approximations that contain zero decimal places of accuracy we attain an approximation with two decimal places of accuracy with truncation.

Richardson's Extrapolation

- This process is known as Richardson's Extrapolation.
- More generally, assume we have a formula $N(h)$ that approximates an unknown value M and that

$$
M-N(h)=K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\cdots,
$$

for some unknown constants $K_{1}, K_{2}, K_{3}, \ldots$.. Note that in this example, the truncation error is $O(h)$.

- Without knowing $K_{1}, K_{2}, K_{3}, \ldots$ it is possible to produce a higher order approximation as seen in our previous example.
- Note, we could use our result from the previous example to produce an approximation of order $O\left(h^{6}\right)$. To understand this statement more, let us look at an example.

Example from numerical integration

The following data gives approximations to the integral

$$
M=\int_{0}^{\pi} \sin x d x .
$$

$N_{1}(h)=1.570796, \quad N_{1}\left(\frac{h}{2}\right)=1.896119, \quad N_{1}\left(\frac{h}{4}\right)=$
1.974242

Assuming $M=N_{1}(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+K_{4} h^{8}+O\left(h^{10}\right)$ construct an extrapolation table to determine an order six approximation.
Solution As before, we evaluate our series at h and $h / 2$ and get:

$$
\begin{align*}
M & =N_{1}(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+K_{4} h^{8}+O\left(h^{10}\right), \text { and } \\
M & =N_{1}(h / 2)+K_{1} \frac{h^{2}}{4}+K_{2} \frac{h^{4}}{16}+K_{3} \frac{h^{6}}{64}+K_{4} \frac{h^{8}}{256}+O\left(h^{10}\right) \tag{tww}
\end{align*}
$$

Example Continued

Therefore,

$$
\begin{array}{rlllll}
4 M & =4 N_{1}\left(\frac{h}{2}\right) & + & K_{1} h^{2} & +K_{2} \frac{h^{4}}{4}+K_{3} \frac{h^{6}}{16}+\cdots \\
-M & =-N(h) & - & K_{1} h^{2} & -K_{2} h^{4}-K_{3} h^{6} & +\cdots \\
\hline 3 M & =4 N_{1}\left(\frac{h}{2}\right)-N_{1}(h) & & +\hat{K}_{2} h^{4}+\hat{K}_{3} h^{6}+\cdots
\end{array}
$$

Thus, $M=N_{1}\left(\frac{h}{2}\right)+\frac{N_{1}\left(\frac{h}{2}\right)-N_{1}(h)}{3}+\hat{K}_{2} h^{4}+\hat{K}_{3} h^{6}$.
Letting $N_{2}=N_{1}\left(\frac{h}{2}\right)+\frac{N_{1}\left(\frac{h}{2}\right)-N_{1}(h)}{3}$ we get $M=N_{2}(h)+\hat{K} h^{4}+\hat{K}_{3} h^{6}$.

Again, $M=N_{2}(h)+\hat{K} h^{4}+\hat{K}_{3} h^{6}$.
Therefore, $M=N_{2}\left(\frac{h}{2}\right)+\frac{1}{16} \hat{K}_{2} h^{4}+\frac{1}{64} K_{3} h^{6}$, which leads to:

$$
\begin{aligned}
16 M & =16 N_{2}\left(\frac{h}{2}\right) & & +\hat{K}_{2} h^{4}+\frac{1}{4} \hat{K}_{3} h^{6}+\cdots \\
-M & =-N_{2}(h) & -\hat{K}_{2} h^{4}- & \hat{K}_{3} h^{6}+\cdots \\
\hline 15 M & =16 N_{2}\left(\frac{h}{2}\right)-N_{2}(h) & & +O\left(h^{6}\right)
\end{aligned}
$$

Hence, $M=N_{2}\left(\frac{h}{2}\right)+\frac{N_{2}\left(\frac{h}{2}\right)-N_{2}(h)}{15}+O\left(h^{6}\right)$.

Example Continued ${ }^{3}$

In terms of a table, we find:

Given	$N_{1}\left(\frac{h}{2}\right)+\frac{N_{1}\left(\frac{h}{2}\right)-N_{1}(h)}{3}$	$N_{2}\left(\frac{h}{2}\right)+\frac{N_{2}\left(\frac{h}{2}\right)-N_{2}(h)}{15}$
$N_{1}(h)=1.570796$		
$N_{1}\left(\frac{h}{2}\right)=1.896119$	$N_{2}(h)=2.004560$	
$N_{1}\left(\frac{h}{4}\right)=1.974242$	$N_{2}\left(\frac{h}{2}\right)=2.000270$	1.999984

In the chapter on numerical integration, we see that this is the basis of a Romberg integration.

Example summary

Take a moment and reflect on the process we just followed.

- We began with $O\left(h^{2}\right)$ approximations for which we knew the Taylor expansion.
- We used our $O\left(h^{2}\right)$ approximations to find N_{2} which were order $O\left(h^{4}\right)$ and again for which we knew the Taylor expansions.
- Finally, we used the N_{2} approximations to find an $O\left(h^{6}\right)$ approximation.
- Could we continue this to find an order 8 approximation? It depends - remember that reducing h can lead to round-off error. As long as we don't hit that threshold, then our computations do not corrupt our Taylor expansion.

