Review of Complex Variables

The complex field consists of all solutions of polynomial equations having real coeffi-
cients. That is, the complex field is the algebraic closure of the real field.

If we denote by 7 and —¢ the solutions to the equation

then the complex field is given by
C:={a+bi:abeR}.

The complex field can be put into one-to-one correspondence with the points of a

plane oriented by a rectangular coordinate system:
a+ bi — (a,b).

This plane is called the complex plane. We slightly abuse notation by denoting both the
complex field and the complex plane with the symbol C.
If » and 6 are the polar coordinates for an element z of the complex plane, then r is

called the modulus and 6 the argument of z. (In symbols: |z| = r,argz = 6). Clearly,
z=rcosf +irsind.

Given z; = a1 + 1b; and 2z = ag + iby with ag, b € R the arithmetic operations on C are
given by
21+ 29 = (Cll + ag) + Z(bl + bg)

Z1R9 = (G,laz — blbz) + i(albz + agbl)

The distance between z; and 25 is given by

|21 — 22| = \/(al —ag)? + (by — by)2.

Fuler’s Formula:

Assuming the series expansion

2 .7)'3

eXp($)=6$=1+x+§+§+...



we obtain '
e = cosf + isinf

e* = e* ™ = ¢®[cosy + isiny].

Hence, if r and 6 are the polar coordinates for z = z + iy, then z = re*®. Moreover, we

immediately obtain De Moivre’s Formula

212y 20 = (11€%) (r2e™?) - (rne™n)

=7riTr9--- rnez(91+62+"'+6n)

=ry--rp(cos(0y + -+ 0,) +isin(6r + -+ -+ 6p))

where 2z, = re®, k= 1,...,n. We also obtain
2" = (re?)n = pneind
and
% — Zl/n — rl/neie/n‘
In particular, the numbers 1, w, w?, ..., w" ! where w = e2™/™ are called the nt® roots of

unity. They consistute the n distinct roots of the polynomial equation

z" = 1.

The complex conjugate of a point z = a+bi, a, b € R, is the point Z = a — bi. Observe
that

2z = |z|?

and if z = re®®, then z = re=. Given 2o € C and € > 0, we denote by
B(zp,€) :=={2€C:|z— 2| <€}
the open disk (or ball) of radius € about zy.

Point Set Terminology

— A set S C C is said to be open if for each point z € S there is an € > 0 such that

B(z,e) C S.
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— The complement of a set S C C is given by
S=C\S:={z€C:2¢ 5}

— A set S C C is said to be closed if S is open.

— A point z € C is said to be a boundary point of the set S C C if all ¢ > 0 the set
B(z,¢€) contains points from both S and S. The collection of all boundary points of
S is called the boundary of S and is denoted bdry S.

— Any two continuous functions z(t) and y(t) parametrized on the real interval [a, 8] C R

generate a continuous curve in C given by

z(t) == z(t) + iy(t),t € [o, B

Such a curve is called a Jordan Arc if it contains no multiple points, i.e., distinct
points on the curve correspond to distinct values of t. Such curves are oriented in the
sense that there is an initial point z(«), a terminal point z(3), and for any two points
on the curve it is always clear which precedes the other.

— A closed Jordan curve (simple closed curve) is a continuous curve having z(«a) = z(3)

but otherwise having no other multiple points.

— A Jordan arc need not be of finite arc length. But if it is, then the arc is said to be
rectifiable and is then called a path segment.

— If a finite number of path segments are joined in order in such a manner that the initial
point of each coincides with the terminal point of its predecessor, a path is formed.
If the initial and terminal points of a path coincide, it is called a closed path. A
closed path is oriented as before in the sense that z(¢) describes the entire closed path
precisely once when ¢ runs over its interval. If two distinct points z always correspond
in this manner to two distinct values of ¢, except the initial and terminal values, the
closed path is said to be simple.

— A set S is said to be connected if any two points of the set can be joined by a path
consisting of straight line segments (i.e. polygonal path) all points of which are in S.

— An open connected set is called an (open) region or domain.

— The closure of a set is the union of the set with its boundary points. A closed region
(or domain) is a set that is the closure of an open region (or domain).

— A region R is called simply-connected if any closed Jordan curve in R can be contin-

uously shrunk to a point without leaving R. A region that is not simply-connected is

called multiply-connected.



Jordan Curve Theorem:

A closed Jordan curve decomposes the plane into precisely two separate regions one
of which is bounded and the other unbounded. The curve forms the common boundary of
both regions.

The bounded region is called the interior or inside of the curve and the unbounded
region is called the exterior or outside of the curve.

It follows that the region inside a simple closed curve is simply-connected.

Functions of a Complex Variable

Let S ¢ C. A function from S to C is a correspondence between points in S and
points in C. Each z € § may correspond to one or more values w in C. We say that w is
a function of z and write w = f(z) or w = G(z) depending on the name that is assigned
to the correspondence. A function that assigns one and only one value of w € C to each
value z € S is said to be single-valued on S; otherwise, it is said to be multi-valued.
ex: 1) f(z) = 22 is single-valued

2)  f(z) = 2'/? is multi-valued.

z = ret0+2km) k=0,1,2,...
2M2 = p1/26i(5 +km) k=0,1,...

— £ 1/2,i6/2

A multi-valued function can often be considered as a collection of single-valued functions,

each member of which is called a branch of the function. In such cases it is customary to

consider one particular member as the principle branch of the multi-valued function.

— A single-valued function f : C — C is said to be continuous at the point zy € C if to
every € > 0 there is a 6 > 0 such that |f(z) — f(z0)| < € whenever |z — 29| < €.

— The function f is said to be continuous on a set S if it is continuous at every point of
S.

— Just as in the case of real variables, closed and bounded subsets of C are compact,
i.e., bounded infinite sequences admit at least one convergent subsequence. Moreover,
continuous functions on compact sets are uniformly continuous.

— Recall that each complex number can be associated with a unique pair of real numbers

z=x+iy— (z,y) € R
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where z is called the real part of z, Re(z), and y the imaginary part of z, Im(z). In
this way, each function f : C — C corresponds to a pair of mappings u : R?2 — R and
v:R2 5 R
flz+iy) = u(z,y) +iv(z,y).
The function u is called the real part of f and v the imaginary part. We have that f
is continuous if and only if both v and v are continuous.
— If f:C — C is single-valued in some domain D C C, the derivative of f at a point z

is defined as

[+ Az) = f(2)

I [p—

fl@) = lim =,

provided the limit exists and is independent of the manner in which Az — 0. In such

cases f(z) is said to be differentiable at z.
— If f'(2) exists at all points z in a domain D, then f(z) is said to be analytic in D.
The terms regular and holomorphic are sometimes used as synonyms for analytic.

ex: 1) f(z) = 2% f'(2) = az®"?
2) f(z)=¢e? f'(z) = €

Cauchy-Riemann Equations:

A necessary condition that w = f(z) = u(x,y) + iv(x,y) be analytic in a domain D

is that u and v satisfy the Cauchy-Riemann equations
Ju Ov Ou ov
or 0y’ dy o

If these partial derivatives are continuous in D, then the Cauchy-Riemann equations are

(C-R-E)

sufficient for f to be analytic in D.
Proof: (Necessity) Let z+ Az = (x+ Az)+i(y + Ay). In order that f be analytic, the
limit
iy e JEHAZ)— @) L fl@4 Az +i(y + Ay)) — flz +iy)
fi(z) = Alir—ilo Az = Ml Az +iAy

Ay—0

must exist and be independent of the manner in which Az — 0, Ay — 0. We consider the
limit on two trajectories having Ax — 0, Ay — 0.
(1) Ay =0, Az — 0: Then

F(z) = lim u(r + Az, y) — u(z,y) n Z,'u(:v + Azx,y) — V(z,y)
Az

-0 Az Az
ou .0v
- %(may) + Z%(may)



(2) Az =0, Ay — 0: Then

u(z,y+ Ay) — u(z,y) n iv(x, y+ Ay) —v(z,y)

/ _ .
f(z) = Jlim, iAy Ay
Ou ov

By equating the real and imaginary parts in (1) and (2) above, we obtain the Cauchy-
Riemann equations.

(Sufficiency) From the continuity of the partials in C-R-E, we know that

flz+Az,y+Ay)—f(z,y) = u(z+Az,y+Ay)—u(z,y)+i(v(z+Az,y+Ay)—v(z,y))
= [(u(z+Az,y+Ay)—u(z,y+Ay))+(u(z,y+Ay)—u(z,y))]
+i[(v(z+Az,y+Ay)—v(z,y+Ay))+(v(z,y+Ay)—v(z,y))]
=%% Az+0(Az)+ 5% Ay+0(Ay)
+i[ 4L Az+0(97)+ §L Ay+0(Ay)]
=[gL+i Y| Azt gL +i 52 | Ay+0(Az)+0(Ay)
(CRE) =[x +igt]Az+[- 8 +i 5% |Ay+0(Az) +0(Ay)

=(g%+ig2)(Az+iAy)+0(Az)+0(Ay)
Now taking the limit as Az = Az + 1Ay — 0 we find that

oy 2 DU 00
f(z)_ax—ﬂ&v

so that the limit exists and is unique. 0
Singular Points:

A point at which f fails to be analytic is called a singular point or singularity of f.
Types of singularities:

1) Isolated singularities: A point zg is called an isolated singularity of f if there is an

€ > 0 such that the only singularity of f in the ball B(zg;e€) is 2.
2) Poles: A point zj is said to be a pole of f of order n € {1,2,...} if

lim (z — z0)" f(2)

Z—>20

exists and is non-zero. If n = 1, the pole is said to be simple.

3) Branch points of multi-valued functions are singularities.
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4) Removable singularities: A singularity at which

lim f(z)=1L

Z—>20

exists but at which f(z) is either undefined or f(zp) # L is called a removable singu-
larity.

ex: f(z) = 22, 2 =0

5) Essential singularity: A singularity that is neither a pole, a branch point, or removable

is called an essential singularity.

Complex Integration

Complex line integrals:

Let f be continuous at all points of a continuous rectifiable curve C. Partition C into

n parts by means of points 21, ..., z,_1 chosen arbitrarily and set zg = a, z, = b

b=z

n

One each of the arcs from zi_1 to z; choose a point (i for k = 1,...,n. Form the Riemann

sum

Sn = F(G) (2 — 20—1) = Y () Az
k=1 k=1

If the limit of the S,,’s exists as mI?XAzk — 0 independent of the choice of partition and
the selection of the points (i, then we say that the complex line integral along C from a to
b exists and we say that the value of the integral, denoted |, ¢ f(2)dz, is equal to the value
of the limit. Note that if f is bounded on C by M, i.e.

\f(z)l] <M  forall z €C,



then
< M - [arclength of C].

/C f(2)dz

Recall that real line integrals are defined in the same way via Riemann sums. If P

Real Line Integrals:

and @ are continuous functions from R? to R and C is a smooth curve in R” parametrized

by the differentiable functions ¢ and ;

C={(e(®),¥(t)) : t € [a,b]}.

Then
/C[P(:r, y)dz + Q(z,y)dy]

b
= [ 1P, 00 0t + Qe pie) 0y

If f(x+iy) = u(z,y) + iv(z,y) and C is a rectifiable curve for which [, fdz exist, then

one can show by real variable techniques that
/ f(z)dz = / (u + 1v)(dx + idy)
c c
= / (udz — vdy) + z/ (vdz + udy).
c c

Thus the real and imaginary parts of | ¢ Jdz can be computed by real variable methods.

Contour integrals:

Let C be the boundary of a region of the (z,y)-plane. Let an observer be standing
on that side of the plane such that if the observer were at the origin and looking down the
positive z-axis, then the positive y-axis would be on their left, i.e., the top of their head
points in the direction of the positive z-axis in right-handed three dimensional coordinates.

The curve C' is said to be traversed in the positive direction if the observer, traveling in

this direction, has the region to the left. We use the symbol

?{; f(2)dz

to denote the integration of f around the boundary of C in the positive direction. In the
case of a circle, the positive direction is counterclockwise. Such an integral around C is

called a contour integral.




Green’s Theorem in the Plane:

Let P(z,y) and Q(z,y) be continuous functions from R? to R having continuous

partial derivatives in the region R and its boundary. Then

?{dexJFQdy:/R/ <g—g—%—];) dzdy.

The theorem is valid for both simply and multiply connected regions.

Cauchy’s Theorem:

Let f be analytic in a region R and on its boundary, C, if f’ is continuous on both R

and C. Then
f f(z)dz=0
c

Proof: §, f(2)dz = §,(u+ i) (dz + idy) = §,(udz — vdy) + i(vdz + udy)

= g — (g_z + g—;j) +1 (g—g — g-;) dxdy (by Green’s Theorem)

= 0. (by the CRE) 0
Note: The so-called Cauchy-Goursat Theorem does not require f’ to be continuous on R

and C to obtain the result. But the proof is substantially more intricate.
Corollary 1: (Path Independence). If f is analytic in a simply connected region R

and zy and z, are any two points in R, the

fdz = fdz
01 02

for any two paths connecting z; to zs.

Corollary 2: (Existence of Antiderivatives). Let f be analytic on a simply connected
region R and let zy € R. For each z € R define

re) = [ s

Then F is analytic on R with F'(z) = f(2).

Corollary 3: (Fundamental Theorem of Calculus). Let F have an analytic deriva-

tive f = F' on the simply connected region R. Then

b
/ F(z)dz = F(b) — F(a).
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Corollary 4: (Homotopic Equivalence of Integrals). Let f be analytic in a region
bounded by non-overlapping simple closed curves C, Cy, Cs,...,C,, where C1,Cs,...,C,
are contained in the interior of the bounded region determined by C'. If f is also analytic
on C,Cq,...,C,, then

}{f dz—j[f )dz + C2f z)dz + - j{f

C

example: Evaluation fc

in its interior.

16 do
me — 9mi

f f Jz—al=rz=a+re?,0<0<2r
cZ—a z—a’

reif

10



Leibniz’s Rule

Let ¢ : [a,b] X [¢,d] — C be a continuous function and define g : [¢,d] — C by

b
a(t) = / (s, )ds.

Then g is continuous. Moreover, if %—f exists and is a continuous function on [a, b] X [¢, d],

then g is continuously differentiable and

b
g'(t) = / %—f(s, £)ds. (LR)

Proof: The continuity of g follows from the uniform continuity of ¢ on [a, b] X [¢, d]. If we
now prove that g is differentiable with ¢’ given by formula (LR), then it will follow from
the first part that ¢’ is continuous since %—‘f is continuous. Hence, we need only verify the
formula (LR).

Fix a point tg in [¢, d] and let € > 0. Denote dp /0t by ps: it follows that g is uniformly
continuous on [a,b] X [¢,d]. Thus, there is a 6 > 0 such that |pa(s',t') — @a(s,t)] < €

whenever (s — s')? + (t — t')? < 62. In particular,
[p2(s,t) — pa(s,to)| <€

whenever |t — to| < § and a < s < b. Hence

/ (02(5,7) — pa(s, to)ldr| < eft — to] (a)

to

whenever [t — to| < § and a < s < b. Now for a fixed s in [a, b] the function

D(t) = ¢(s,1) — tp2(s,10)

is an anti-derivative for U(t) = pa(s,t) — pa(s,to). Thus, by the Fundamental Theorem of
Calculus with (a), it follows that

[p(s,t) — @(s,t0) — (t — to)pa(s,to)| < €lt — to

for any s when |t — to| < §. Therefore,

_ b
M_/ ©a (s, to)ds

b
S/
a

< e€lb—al

@(s,t) = p(s,t0) = (t = to)pa(s, to)
t—1p

ds

whenever [t — tg| < 4. [
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Corollary. Let G C C be open and let C be a rectifiable curve (path) in G. Suppose that
@ :C x G — C is a continuous function and define g : G — C by

9(z) = /C (¢, 2)dC.

Then g is continuous. If g—f exists for each ((,z) in C' x G and is continuous, then g is

analytic and
/ _ Oy

Cauchy Integral Formulas

If f is analytic inside and on a simple closed curve C and z is any point inside C, then

1 f)

2mi Jo ¢ — =

fz) =

dg.

Moreover, the n*® derivative of f at z is given by

n! f(©)
(n) 2 CIF
1) = g § e (cr)
forn=0,1,2,....
Proof. We proceed by induction on n in (CIF). Let n = 0. First note that by Cor. 4 to
Cauchy’s Theorem we may replace C by the curve I'. given by w = z +ee®, 0 < 0 < 27

for any given € > 0. Next observe that

f 29 ]{ f<<>_£<z>dg+j£ 10
Q- [z

- dC + 2mif(z)
by the example appearing after the above mentioned corollary. Thus, it remains only to
show that
FO=FG) e _
(—=z

But, by the definition of the derlvatlve,

‘Lﬁ(z) _ f’(z)‘ < o(e) on T.

Letting € — 0 yields the result for n = 0.
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Now suppose that (CIF) holds for n = 0,1,..., N. We show that it must also hold at
N + 1. For this we apply the Corollary to Leibniz’s Rule to the formula (CIF) at n = N:

FO() = )
_N!'9 ()
= z—a—f (L

= L fc (0 [%(( —2)" V)| q¢ (by Liebniz’s rule)
N+1)

271
_ ! f(Q)
- 2mi 7{0 (¢ —z)N+2 de. .

Corollary 1: (Morera’s Theorem) (Converse of Cauchy’s Theorem). If f is con-

tinuous in a simply-connected region R and if

7{0 F(2)dz = 0

around every simple closed curve in R, then f is analytic in R.

Proof: If §, f(z)dz = 0 independent of C, then the function

F(z) = / T 1(Q)de

is well defined and F'(z) = f(z). Hence F is analytic on R. The Cauchy Integral Formula’s

imply F" exists and is continuous on R. But F” = f’ so f is analytic on R. d

Corollary 2: (Cauchy’s Inequality). If f is analytic inside and on a circle C of radius

r centered at zy, then

M -n!
1F™ ()| < i =0,1,2,...

where M is any constant such that |f(z)| < M for all z on C.

Proof: By CIF,

nl /()

2m ?{c (€ — 20)"*!
n! M
<7
— 2r pntl

£ (20)| = d¢

27T, [
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Corollary 3: (Liouville’s Theorem). The only functions that are both analytic and

bounded on all of C are the constant functions.

Proof: Assume f is analytic and bounded on C. We need to show that f/ = 0. Let z9 € C,
r >0, and M > 0 be a bound for f on C. Then, by Cauchy’s Inequality,

o)l <

Send r — oo to obtain the result. 0
Corollary 4: (The Fundament Theorem of Algebra). Every polynomial equation
P(z)=ap+a1z+---+a,2z" =0,

where the degree n > 1 and a,, # 0, has exactly n roots (counting multiplicity).

Proof: We first show that P has at least one root. Indeed, if P had no roots, then
q(z) = 1/P(z) would be analytic on C. Moreover, |¢(z)| is bounded, in fact approaches
zero, as |z| — oo. Thus, by Liouville’s Theorem, ¢(z) is the constant function. This
contradicts the hypothesis that n > 1 so P has at least one root.

Let z; be a root of P. Then by the division algorithm for polynomials

P(z) = (z — 1) P1(2)
where P; is a polynomial of degree n — 1. Hence P; has a root z5. Thus,
P(z) = (z = 21)(z — 22) P2(2)
where P, is a polynomial of degree n — 2. Continue in this way to obtain the result. 0

Power Series. Taylor Series, and Laurent Series

Let wu1(z),u2(2),..., be a sequence of functions defined and single-valued in some

region R C R. We call u(z) the (pointwise) limit of the sequence {u,} on R, and write

lim u,, = u, if for each € > 0 and z € R there is an N ,) such that
[un(2) —u(z)] <€ Vn>Ne.,.

In this case, the sequence {u,,} is said to converge (pointwise) to v on R. If it so happens
that for each € > 0 there is an N(e) such that

[un(z) —u(z)] <e Vn>N,and z€ R,
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we say that the sequence {u,} converges uniformly to v on R.

One can associate with the sequence of functions {u,} a new sequence of functions

1(2)

u1(z) + uz(2)

»
=
—
N
~
Il
N

W
[\V]
—~~

N
~—

Il

sn(2) = u1(2) +ua(z) + - - + un(2)

called the sequence of partial sums with s,, called the nt® partial sum.

The sequence {s,} is symbolized by the notation
oo
D un
n=1

and is called an infinite series. If lim s,, exists, the series is said to be convergent; otherwise,
n

it is said to be divergent. The series is called absolutely convergent if the associated series

Y lun(2)]

of absolute values

oo oo
converges. If Zun (z) converges but Z\un (z)| does not, the series is said to be condition-

n=1 n=1

o0
ally convergent. The series Zun(z) is said to be uniformly convergent on a region R if

n=1
the associated sequence of partial sums is uniformly convergent on R.

oo
Z an(z — 20)"
n=0

is called a power series. The radius of convergence of a power series is given by

A series of the form

(o.¢]
R =sup{r>0: Z anr™ converges},

n=0

and the disk {2z : |z— 29| < R} is called the circle of convergence. The radius of convergence

may take the values 0 and +oc and it always exists (R = 0 is always possible).
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Theorem. If R is the radius of convergence for the power series Zan(z — 2p)", then
n=0

the series converges uniformly and absolutely on any bounded region whose boundary lies

entirely inside the circle of convergence, the series diverges at every point outside the circle
of convergence, and the series can either diverge or converge at boundary points of the

circle of convergence.

Theorem: [Term by Term Integration and Differentiation|. Let fy, f1,... be a
sequence of functions each of which is analytic on the region R. Further suppose that the

series

F(z)=)  fu(2)

is uniformly convergent on every closed subregion of R.
(a) The function F(z) is analytic on R with

FR@) =3 P k=12,...
n=0

and these series converge uniformly on every closed subregion of R. In particular, a
power series can be differentiated term by term in any region lying entirely inside its
circle of convergence.

(b) Every series obtained by integration term by term along a path C in R converges and

/C F(2)dz = é /C Fo(2)dz.

In particular, a power series can be integrated term by term along any curve lying

entirely inside its circle of convergence.

Geometric Series:

oo
The geometric series Zr" is perhaps the most important key available in the study
n=0

of infinite series and power series in particular. We make use of the following facts:
1) 1+7r+7r2+. 4+t =1=" for all r € C,

o0

2) D2,y =k if and only if |r| < 1
3) L =1+4r4r24. 4y ™ for all r € C.

1—r 1—7r

Note: (3) is just a restatement of (1).
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Taylor’s Theorem. If f is analytic inside a circle C with center z,, then for all z inside

C,
!/
z
f(z) = f(z0) + f(20)(z — 20) + / ;‘0) (z—29)% + - -
Proof: Let z be any point inside C. Construct a circle C; with center at zg and enclosing
zZ.
Then by Cauchy’s integral formula,
1 f(Q)
= — —=d(.
(@ 1) = g §. Lol
Let r = (2 — 20) /(¢ — 20), then
1 1 1 1

C—z:(C—zo)—(z—zo):C—zol—r

[1+r+r2+---+r"‘1+ 4 ]

¢ — %o 1—r
1 z— 2o (2 — 2)? (z — z)" 1 <z—zo)n 1
B e LI (S N (S N (P B ey
By substituting this identity into (a) above we obtain
_ L f(Q) (2 — 20) f(Q)
1) = 271 %01 ¢ — 2 de + 271 7{)1 ¢ - ZO)QdC *
(z —20)" " f(Q)
+ i %Cl (C—Zo)"dC+E"
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where E,, = == fCl (ﬂ>

271 ¢—z0

g(—gz) d(. Applying the Cauchy Integral Formulas yields

n—1) 20 .
12) = £Go) + o)z = z0) + oo+ 1) s+ B

Hence, it remains only to show that F,, — 0 as n — oo. First note that since ¢ is on C,

we have
Z — 20

C— 2o
where «y is constant for all ( on Cy. Also, |f({)| < M for some M > 0 on Cy, and
I — 2] =|(C—20) — (2 — 20)| > P — |z — #z| > 0 where P is the radius of Cy. Therefore,

=v<1

1 _ n
2w |Jo, \C—20) (—%
1 "M
= ——727P =0 — 00.
27rP—\z—zO|ﬂ- as n — o0 [l
Some Special Series:
2
. z
e —1+z+§+
AR
smz:z—g—i-ﬁ—---
22 A
cosz:1—§+ﬂ—---
2228
In(1 —, 2 Lz
n(l+z) ==z 2+3

Laurent’s Theorem. If f is analytic inside and on the boundary of the annular shaped
region R bounded by two concentric circles C1 and Cy with center at zy and respective

radii 7y and 79 (r1 > r2), then for all z in R,

(LS) FR) = anz—2)" = (z‘j;z()) +3 an(z — 20)"
—0o0 n=1 n=0
where . 0
an=2—m Clmdg,ﬂ,:o,l,?,...
a_ L 1) d¢,n=1,2,...

n = 2—7'('7, c, (C_a)_n+1
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Proof: Let z € R. Observe that by Cauchy’s Integral formula

_ b f(¢) 1 f(¢)
1) =55 ?{, C— z)dC 2mi Jo, (C— z)dC

The path integrals between
P; and P; cancel each

other out

Let us first consider the integral on C;. Observe that if ¢ is a point on C7, then we have

the expansion
1 1 1 1

C—Z:C—Zo1_(z_—_20) :C—ZOTZ(Z:%)

— =0

where this series converges uniformy for all ( on C since

zZ— 20

¢ — 2o

_ lr= 2l < 1.

™

Hence

Ci meo
oo
= Z an(z — 29)" (by uniform convergence)
n=0

Next consider the integral = ! (C)dC . If { is a point on Cs, we have the expansion
8 271'2 Co

11 1 B i( —zo>
(-2 z—zol_<c—zo> z—zono zZ— 2

zZ—Z0

19



where this series converges uniformly for all { € C5 since

k| S B
2=z |z— 2
Hence
1 f¢) . 1 = 1 .
_% Cs (C—z)dc_ ﬁﬁzrg(z_ZO)n+lf(C)(C ZO) dC
= Z a_1(z — zo) (by uniform convergence). 0
n=0

The first term in (LS) is called the principle part and the second the analytic part of

the Laurent series.

Classification of Singularities

It is possible to classify the singularities of a function f by examination of its Laurent
series expanded at these singularities. First note that if f is analytic inside the circle Cs,
then by Cauchy’s Theorem a_,, = 0 for all n = 1,2,..., and the Laurent series reduces to

the Taylor series for the function.

1) Poles: If f(z) has expansion (LS) in which the principle part has only finitely many
terms given by
a_1 a_9 a_n

z— 2 (z—zo)2+'“+(z—zo)"

where a_,, # 0, then z; is a pole of order n for f. If n = 1, then it is a simple pole.

2) Essential singularities: If f(z) has expansion (LS) in which the principle part has

infintely many terms, then z; is an essential sinsgularity for f.

A function is said to be entire if it is analytic on all of C. If f is analytic on a region
R except for finitely many poles, then f is said to be meromorphic on R. One rarely
computes Laurent series by evaluating the integrals in (LS), rather one builds the series
from known series just as in the case of Taylor Series. Some examples follow:
examples: 1) f(z) = %; Find a Laurent series for f about z = 1 convergent for

1<|lz—1 <1
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u=z-1
z=u+1

=f(u+l)

3u
(2ur1)(u-1)

Partial Fractions

Ju _ 1 1

1
= =< lul<1
Gur D=1 2usi u-r2 M

1 o0 oo
- ==-> ur=-) (z-1)"ul <1
o n=0 n=0

oo

e T

2u+1 2u1+% 2u

= g(_l)n2nl+l un1+1 - ( %) <z — 1)

Why is the principle part of this expansion inﬁmte?

3z—3
2) f(x):(2z_1)(z_2) at z=2,u=2z—-2,z2=u+2

_ 3u+3 1_‘_1 1
T (Qu+3)u u) 1+ 2

o
Mg
_|_

() ()




Integration around singularities:

1) It has already been shown that

d .
]{ i = 271, WhereC:{z:z:zo+e’6,0§9§27r}
Cc % — 20

2) Evaluate the integral fc (z_dfzo)n, n = 2,3,... on any simple closed path having 2y in

the interior of the bounded region determined by C.
First observe that by Cauchy’s Theorem we may as well take C = {z : z = zp+¢€?,0 <

6 < 2rm}. Then
dz _ 2™ e df z=zy+ €
‘?{C (z —2z0)" /0 eind dz = ie®df
=i / 7 gi0-ms g
0
1

i(1— 2
ez(l n)é ‘OW

=0,n=2,3,...
1—n "

Let C be a simple closed curve and suppose that f is single-valued and analytic inside and

on C except at the point zy lying inside C. If, at zp, f has the Laurent expansion
o0
f(2) =) an(z - 20)™,
— o0

then ¢, f(z)dz = 2mia_;. For this reason, a_; is called the residue of f at zp.
In order to see this, first use Cauchy’s Theorem to shrink C' to a circle I' of radius r
about zp so that f is analytic on and inside of I' except at zp. Then the Laurent series for

f is uniformly convergent on I". Hence

?{; f(z)dz = iéan(z — 29)"dz

forn=20,1,2,...and n = —2,-3,..., we know that

?{ an(z — 29)"dz =0
r
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while for n = —1 we have

?{ a-1 dz = 2mia_1.
r %= 20
The Residue Theorem

Let f be single-valued and analytic inside and on a simple closed curve C except at

the singularities 21, ..., 2, inside C having residues a' ;,a?,,...,a";. Then

?{ f(z)dz = 27rz'zn:alil.
c k=1

Proof: Just apply Corollary 4 of Cauchy’s Theorem in conjunction with the argument

given above. [

The calculation of Residues
1) a_y = 5 §l"(zo,e) f(2)dz, T'(z0,€) = {20+ €e®® : 0 < 0 < 2r} where I'(2p, €) contains
no other singularities of f.
2) Let zg be a pole of f of order £, i.e.,

lim |(z — 20)®f(2)] is finite.

Z—r20
Then
= li 1 dt k
a1 = i i g (2~ 207 (2]

Thus, at a simple pole

a_y = zll)nzl (z — 20) f(2).

Fractional Residues

Let f have a simple pole at zo with residue a_; and let (e, ¢) be an arc of the circle

|z — 29| = € that subtends an angle ¢ at the center.

N Y(E @)
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Then

liny /7 f(2)dz = ipa_y
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