Assignment 5. Due Fri., Nov. 7.

Reading: Class Notes, pp. 27–37 Chapter 5 in Horn and Johnson.

- 1. (The parallelogram law is a necessary and sufficient condition for a norm to be induced by an inner product.)
 - (a) Show that if a norm $\|\cdot\|$ on a vector space V comes from an inner product, then $\|\cdot\|$ satisfies the parallelogram law:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

[Remark: The converse is true as well: If $\|\cdot\|$ is a norm satisfying the parallelogram law, then it is induced by an inner product. If you want a challenge, try to prove this. Start by using the polarization identity to define $\langle x, y \rangle$:

If
$$\mathbf{F} = \mathbf{R}$$
, $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$
If $\mathbf{F} = \mathbf{C}$, $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$,

and then use the parallelogram law to show that this really defines an inner product which induces $\|\cdot\|$.

- (b) Is C([a, b]) with norm $||u|| = \sup_{x \in [a, b]} |u(x)|$ an inner product space?
- (c) Show that $\ell^2 \subset \mathbf{F}^{\infty}$ is the only inner product space among the ℓ^p spaces.
- 2. A sequence $\{v_n\}$ in an inner product space $(V, \langle \cdot, \cdot \rangle)$ is said to converge weakly to v if $(\forall w \in V) \langle v_n, w \rangle \to \langle v, w \rangle$, and it is said to converge strongly to v if $||v_n v|| \to 0$.
 - (a) Show that if $\dim(V) < \infty$ and $v_n \to v$ weakly, then $v_n \to v$ strongly.
 - (b) Show that part (a) fails for $V = \ell^2$.
 - (c) Show that in any inner product space $(V, \langle \cdot, \cdot \rangle)$, if $v_n \to v$ strongly, then $v_n \to v$ weakly.
- 3. (a) Show that $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$, where $||x||_p$ denotes the ℓ^p -norm of $x \in \mathbb{C}^n$.
 - (b) Show that $||u||_{\infty} = \lim_{p \to \infty} ||u||_p$, where $||u||_p$ denotes the L^p -norm of $u \in C([a,b])$.
- 4. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on a vector space V. Suppose that all sequences $\{v_n\}\subset V$ which satisfy $\|v_n\|_1\to 0$ also satisfy $\|v_n\|_2\to 0$, and vice-versa. Show that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms.