Assignment 6. Due Fri., Nov. 14.

Reading: Class Notes, pp. 33–40 Chapter 5 in Horn and Johnson.

- 1. Let $C^1([a, b])$ be the space of continuous functions on [a, b] whose derivative (one-sided derivative at the endpoints) exists and is continuous on [a, b].
 - (a) Suppose $u \in C([a,b]) \cap C^1((a,b))$ and u' can be extended continuously to [a,b]. Show that $u \in C^1([a,b])$.
 - (b) Show that $||u|| = \sup_{x \in [a,b]} |u(x)| + \sup_{x \in [a,b]} |u'(x)|$ is a norm on $C^1([a,b])$ which makes $C^1([a,b])$ into a Banach space. [Hint for completeness: if $\{u_n\} \subset C^1([a,b])$ satisfies $u_n \to u$ uniformly and $u'_n \to v$ uniformly, take limits in the equation $u_n(x) u_n(a) = \int_a^x u'_n(s) \, ds$ to show that $u \in C^1([a,b])$ and u' = v.]
- 2. If $0 < \alpha \le 1$, a function $u \in C([a, b])$ is said to satisfy a Hölder condition of order α (or to be Hölder continuous of order α) if

$$\sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < \infty.$$

Denote by $\wedge^{\alpha}([a,b])$ this set of functions.

(a) Show that

$$||u||_{\alpha} = \sup_{x \in [a,b]} |u(x)| + \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

is a norm which makes \wedge^{α} into a Banach space.

- (b) Show that $C^1([a,b]) \subset \wedge^{\alpha}([a,b])$ and that the inclusion map is continuous with respect to the norms defined above (i.e., the norm on $C^1([a,b])$ defined in problem 1 and that on $\wedge^{\alpha}([a,b])$ defined in 2a).
- 3. Prove that the dual norm to the ℓ^2 norm on \mathbf{F}^n is again the ℓ^2 norm, and show that the ℓ^2 norm is the only norm on \mathbf{F}^n with this property.