
Assignment 7. Due Fri., Nov. 21.

Reading: Class Notes, pp. 41–47 Chapter 5 in Horn and Johnson.

1. Pictured below is the unit ball for a certain norm on \mathbb{R}^2 .

- (a) Determine the unit ball for the dual norm and plot it labelling important boundary points.
- (b) Does the norm whose unit ball is pictured above come from an inner product? Explain why or why not.
- 2. (a) Let $A \in \mathbb{C}^{n \times n}$ be Hermitian and positive definite and define the A-norm of a vector $x \in \mathbb{C}^n$ by $||x||_A = (x^H A x)^{1/2}$. What are the best constants m and M such that

$$m||x||_2 \le ||x||_A \le M||x||_2, \quad (\forall x \in \mathbb{C}^n)$$
?

(b) Find the best constants m and M such that

$$m|||A|||_1 \le |||A|||_2 \le M|||A|||_1, \quad (\forall A \in \mathbf{C}^{n \times n}),$$

where $|||\cdot|||_p$ denotes the operator norm induced by the ℓ^p norm on \mathbb{C}^n : $|||A|||_p = \sup_{||x||_p=1} ||Ax||_p$.

(c) Find the best constants m and M such that

$$m||A||_F \le |||A|||_2 \le M||A||_F, \quad (\forall A \in \mathbf{C}^{n \times n}),$$

where $\|\cdot\|_F$ denotes the Frobenius norm: $\|A\|_F = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{1/2}$.

3. We showed in an earlier homework exercise that the roots of the polynomial $p(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0$ are the eigenvalues of its *companion matrix*:

$$C(p) = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ & \ddots & \ddots & \vdots & \vdots \\ & & 1 & 0 & -a_{n-2} \\ & & & 1 & -a_{n-1} \end{pmatrix},$$

- (a) If $|||\cdot|||$ is any submultiplicative norm on $\mathbb{C}^{n\times n}$ and λ is an eigenvalue of $A\in\mathbb{C}^{n\times n}$, show that $|||A|||>|\lambda|$.
- (b) Take $||| \cdot ||| = ||| \cdot |||_{\infty}$ and A = C(p) in part (a) to deduce Cauchy's bound: All roots z of p(z) satisfy $|z| \le 1 + \max\{|a_0|, \ldots, |a_{n-1}|\}$.
- (c) Take $|||\cdot||| = |||\cdot|||_1$ and A = C(p) in part (a) to deduce *Montel's bound*: All roots z of p(z) satisfy $|z| \leq \max\{1, |a_0| + |a_1| + \ldots + |a_{n-1}|\}$.
- (d) Apply (c) to the polynomial (z-1)p(z) to deduce another bound of Montel: All roots z of p(z) satisfy $|z| \leq |a_0| + |a_1 a_0| + \ldots + |a_{n-1} 1|$.
- (e) Use (d) to prove Kakeya's Theorem: If $f(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$ is a polynomial with real nonnegative coefficients satisfying $a_n \geq a_{n-1} \geq \ldots \geq a_1 \geq a_0 \geq 0$, then all roots of f lie in the closed unit disk in \mathbb{C} .
- 4. (a) Do the exercise on p. 46 in the Notes.
 - (b) Suppose that $A \in \mathbf{C}^{n \times n}$ is invertible, x is the solution of the linear system Ax = b, and \hat{x} is the solution of the linear system $A\hat{x} = \hat{b}$. Show that for any matrix norm $\|\cdot\|$ induced by a vector norm (denoted in the same way)

$$\frac{\|x - \hat{x}\|}{\|x\|} \le \kappa(A) \frac{\|b - \hat{b}\|}{\|b\|},$$

where $\kappa(A) = ||A|| \cdot ||A^{-1}||$ is the condition number of A, and determine conditions under which equality will hold.