Assignment 1. Due Wednesday, Jan. 19.

Reading: Horn and Johnson, secs. 1.0-1.3, 1.5.

1. Let A be an n by n matrix. Show that the following two statements are equivalent:
(a) A has a complete set of orthonormal eigenvectors; that is, A can be written in the form $A=U \Lambda U^{*}$ where U is a unitary matrix and Λ is a diagonal matrix of eigenvalues.
(b) A commutes with its conjugate transpose; that is, $A A^{*}=A^{*} A$, where $\left(A^{*}\right)_{i j}:=$ $\overline{A_{j i}}$.
2. (problem 9 on p. 25 in HJ.) Let $J_{n}(0)$ be the n by n Jordan block with eigenvalue 0 :

$$
J_{n}(0)=\left(\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right)
$$

Show that $\mathcal{F}\left(J_{n}(0)\right)$ is a disk centered at the origin with radius $\rho\left(H\left(J_{n}(0)\right)\right)$. Here $\mathcal{F}(\cdot)$ denotes the field of values, $\rho(\cdot)$ the spectral radius, and $H(\cdot)$ the Hermitian part. [Hint: Note that for any $\theta, e^{i \theta} J_{n}(0)$ is unitarily similar to $J_{n}(0)$ via the unitary similarity transformation $\left.\operatorname{diag}\left(1, e^{-i \theta}, \ldots, e^{-i(n-1) \theta}\right) J_{n}(0) \operatorname{diag}\left(1, e^{i \theta}, \ldots, e^{i(n-1) \theta}\right).\right]$ Use this to show that $\mathcal{F}\left(J_{n}(0)\right)$ is strictly contained in the unit disk. If $D \in \mathbf{C}^{n \times n}$ is diagonal, show that $\mathcal{F}\left(D J_{n}(0)\right)$ is also a disk centered at the origin with radius $\rho\left(H\left(D J_{n}(0)\right)\right)=\rho\left(H\left(|D| J_{n}(0)\right)\right)$.
3. Write a MATLAB code to compute the field of values of a matrix. Use your code to compute the field of values of a 50 by 50 matrix with -1 's on the first subdiagonal, 1 's on the main diagonal and the first three superdiagonals, and zeros elsewhere. Turn in a plot of your result, using the command axis equal, so that you see the actual shape. Also compute the numerical radius: $\nu(A):=\max _{z \in \mathcal{F}(A)}|z|$.

