Assignment 3. Due Friday, Feb. 11.
Reading: Generalizations of the Field of Values ...

1. Let A be a normal matrix whose eigenvalues lie on a line in the complex plane. Show that the polynomial numerical hull of degree 2 of A is equal to the spectrum of A : $\mathcal{H}_{2}(A)=\sigma(A)$.
2. Let J be an N by N Jordan block with eigenvalue 0 . The polynomial numerical hull of degree $N-1$ of J is a disk about 0 of radius r, where $1>r>1-\log (2 N) / N$.
(a) For a given $\zeta \neq 0$, write $(\zeta I-J)^{-1}$ as a polynomial of degree $N-1$ in J.
(b) Give a lower bound on $\left\|(\zeta I-J)^{-1}\right\|_{2}$ based on $\mathcal{H}_{N-1}(J)$. [Note: In this way, one can use polynomial numerical hulls to estimate pseudospectra.]
3. Download SDPT3 version 2.3 from
www.math.nus.edu.sg/~mattohkc/sdpt3.html
and follow the directions to install it on your computer. [I have been able to make it work under Unix, but not under Windows. If you have trouble, let me know; I have a copy that works on zeno.] Write a code to compute the polynomial numerical hull of a given degree of the matrix with -1 's on the subdiagonal and 1's on the main diagonal and the first three superdiagonals. These computations may take a long time, so use a fairly small matrix, say, 20 by 20 , and try some fairly low degree polynomial numerical hulls, say, $k=2$ and $k=6$.
There is a routine in the SDPT3 package that directly solves the problem

$$
\min _{c_{1}, \ldots, c_{k}}\left\|I-\sum_{j=1}^{k} c_{j} B^{j}\right\|
$$

This routine is called igmres. You will need to loop over different values of ζ, set $B=A-\zeta I$, call igmres (sending it B and the degree k of the polynomial numerical hull you are computing), and then test if the resulting norm is equal to 1 . (I test if it is greater than .999999, to allow for a little roundoff.) If the test passes, then $\zeta \in \mathcal{H}_{k}(A)$; otherwise it is not.
The following code will test if a given point zeta is in $\mathcal{H}_{k}(A)$:

```
B = A - zeta*eye(size(A));
    [blk,AA,C,b,X0,y0,Z0,objval,p] = igmres(B, k, 0, 1); % Check the documentation
                                    % to see what all of the
                                    % arguments are.
if abs(objval(1)) > .999999,
```

```
    % zeta is inside
else
    % zeta is outside
end;
```

Turn in plots showing the points that are inside the polynomial numerical hulls that you compute.

