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Where in the complex plane does a matrix live?
(A question of L. N. Trefethen)

Translating Matrix Problems into Problems in the Complex Plane



What can eigenvalues do?

• If A is normal (e.g., real symmetric) or near normal (well-conditioned
eigenvectors) then eigenvalues describe behavior in spectral norm per-
fectly or almost perfectly:

‖f (A)‖ ≈ max
λ∈σ(A)

|f (λ)|.

• Even if A is highly nonnormal (e.g., not diagonalizable, or diago-
nalizable but with eigenvectors that are almost linearly dependent),
eigenvalues determine the asymptotic behavior of many functions of
A:

‖Ak‖ → 0 as k → ∞ iff ρ(A) < 1.

‖etA‖ → 0 as t → ∞ iff Re(σ(A)) < 0.



What can eigenvalues NOT do?

• etA: Determines the stability of y′ = Ay.

limt→∞ ‖etA‖ = 0 if and only if the eigenvalues of A have negative real parts.
But eigenvalues alone cannot distinguish:
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• Ak: Determines stability of finite difference schemes; determines the
convergence of stationary iterative methods for linear systems.

limk→∞ ‖Ak‖ = 0 if and only if ρ(A) < 1. But eigenvalues alone cannot
distinguish:
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• Ak: Markov chains.

y0 = initial state; Aky0 = state after k steps. Aky0 → v = eigenvector
corresponding to eigenvalue 1. For k large, convergence rate is determined by
second largest eigenvalue. But eigenvalues cannot distinguish:
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• minc1,...,ck ‖I −
∑k

j=1 cjA
j‖: Residual norm in ideal GMRES.

Any possible convergence behavior of GMRES can be attained with a matrix
having any given eigenvalues. (G., Pták, Strakos̆, ’96)
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Given an n by n matrix A, find a set S ⊂ C that can be associated with
A to give more information than the spectrum alone can provide about
the 2-norm of functions of A.

• Field of values or Numerical Range:

W (A) = {〈Aq, q〉 : q ∈ Cn, 〈q, q〉 = 1}.

• ǫ-pseudospectrum:

σǫ(A) = {z ∈ C : z is an eigenvalue of A + E

for some E with ‖E‖ < ǫ}.
• Polynomial numerical hull of degree k:

Hk(A) = {z ∈ C : ‖p(A)‖ ≥ |p(z)| ∀p ∈ Pk}.



In trying to relate ‖f (A)‖ to the size of f on any set S ⊂ C, however,
remember that there are infinitely many functions g such that
g(A) = f (A); e.g., any function g of the form

g(z) = f (z) + χ(z)h(z),

where χ is the minimal polynomial of A and h is any function analytic
in a neighborhood of each eigenvalue of A. These functions all have the
same values on σ(A), but they differ on other sets S ⊂ C. Which one
should ‖f (A)‖ be related to?

If you know that ‖f (A)‖ ≤ C maxz∈S |f (z)|, then choose a function g
whose ∞-norm on S is minimal.



Pick-Nevanlinna Interpolation Problem

g(A) = f (A) if f and g match at the eigenvalues of A and if their
derivatives of orders up through t − 1 match at eigenvalues
corresponding to a t × t Jordan block. Assume for this talk that A is
diagonalizable, with distinct eigenvalues λ1, . . . , λn.

Find the function g ∈ H∞(S) satisfying g(λj) = f (λj), j = 1, . . . , n,
for which ‖g‖L∞(S) is minimal.

If S = D, this is a Pick-Nevanlinna interpolation problem. If S
is simply connected (and S 6= C), do a conformal mapping to the unit
disk. Some results also known for multiply connected regions.



Field of Values or Numerical Range

• W (A) = {q∗Aq : ‖q‖ = 1} is closed if A is finite dimensional
(continuous image of compact unit ball); not necessarily so if A is an
operator on infinite dimensional Hilbert space.

• σ(A) ⊂ W (A).

Proof for eigenvalues: Aq = λq, ‖q‖ = 1 ⇒ q∗Aq = λ.

• W (A) is a convex set (Toeplitz-Hausdorf theorem, 1918).

Method of Proof: Reduce to the 2 by 2 case.

• If A is normal then W (A) is the convex hull of σ(A); if A is
nonnormal W (A) contains more.
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• If y′ = Ay then for certain initial data, ‖y(t)‖ initially increases if
W (A) extends into rhp; ‖y(t)‖ decreases monotonically if W (A) lies
in lhp.

Proof:
d

dt
〈y(t),y(t)〉 = 2Re〈y′(t),y(t)〉 = 2Re〈Ay,y〉.



• If 0 /∈ W (A), then

min
c1

‖I − c1A‖ ≤
√

1 − d2/‖A‖2,

where d is the distance from 0 to W (A).

Proof (that minc1 ‖(I − c1A)r0‖ ≤
√

1 − d2/‖A‖2 · ‖r0‖ ∀r0):

r1 = r0 −
〈Ar0, r0〉
〈Ar0, Ar0〉

Ar0

‖r1‖2 = ‖r0‖2 − 〈Ar0, r0〉2
〈Ar0, Ar0〉

= ‖r0‖2 ·
(

1 − 〈Ar0, r0〉2
‖r0‖2 · ‖Ar0‖2

)

≤ ‖r0‖2

(

1 − d2

‖A‖2

)

.

• What if 0 ∈ W (A)?

Then minc1 ‖I − c1A‖ = 1, but might have minc1,...,ck ‖I −∑k
j=1 cjA

j‖ < 1.



Crouzeix’s Conjecture:

For any polynomial p (or any function analytic in W (A)),

‖p(A)‖ ≤ 2 max
z∈W (A)

|p(z)|.

• Constant 2 can be attained:

A =

(

0 1
0 0

)

.

W (A) is disk of radius 1/2 about 0. ‖A‖ = 1 = 2 maxz∈D1/2
|z|.

• For more information and interesting open problems, see:

http://perso.univ-rennes1.fr/michel.crouzeix



Known Results

• Von Neumann’s Inequality (1951):

‖p(A)‖ ≤ max
z∈D‖A‖

|p(z)|.

• Power Inequality (Berger/Pearcy, 1966):

‖Ak‖ ≤ 2 max
z∈W (A)

|zk|.

More precisely, ν(Ak) ≤ ν(A)k, where ν(A) is the numerical
radius: maxz∈W (A) |z|.



• Badea (2004), based on Ando (1973):

‖p(A)‖ ≤ 2 max
z∈Dν(A)

|p(z)|.

• Crouzeix (2004 − >):

The conjecture is true for 2 by 2 matrices. For general n by n
matrices,

‖p(A)‖ ≤ 11.08 max
z∈W (A)

|p(z)|

If A is a 2 by 2 matrix and W (A) is a disk, then best constant is 2; if
W (A) is an ellipse with eccentricity ǫ, then the best constant is

2 exp

(

−
∑

n≥1

(−1)n+1

n

2

1 + ρ4n

)

, where ρ =
1 +

√
1 − ǫ2

ǫ

Method of Proof: Explicitly map W (A) to D̄.



Badea’s Result

Ando: If ν(A) ≤ 1, then there is a Hermitian matrix B and a unitary
matrix U such that:

A = 2 cos(B)U sin(B).

Claim: A is similar to a contraction via a similarity transformation with
condition number ≤ 2.

Let g(x) = max{1, 2| cos x|}, and define H = g(B), T = H−1AH . Then

‖H‖ ≤ 2, ‖H−1‖ ≤ 1, ‖ sin(B)H‖ ≤ 1, 2‖H−1 cos(B)‖ ≤ 1.

Thus ‖T‖ ≤ 1. �

By von Neumann’s inequality,

‖p(A)‖ ≤ ‖H‖ ‖p(T )‖ ‖H−1‖ ≤ 2‖p‖L∞(D).



How does Crouzeix’s conjecture or Badea’s result help with the
analysis of GMRES?

Equivalent statement:

‖p(A)‖ ≤ 2 min
{f∈H∞(S):f(A)=p(A)}

‖f‖L∞(S),

where S = W (A) (conjecture) or S is a disk containing W (A)
(theorem).

The ideal GMRES polynomial is Pk(z) = 1 −∑k
j=1 cjz

j, where
c1, . . . , ck minimize ‖Pk(A)‖, so

‖Pk(A)‖ ≤ 2 min
p∈Pk

p(0)=1

min
{f∈H∞(S):f(A)=p(A)}

‖f‖L∞(S).



Blaschke Products

Let w1, . . . , wn be the values of a kth degree polynomial p with p(0) = 1
at the eigenvalues λ1, . . . , λn of A. Map S to D̄ via a conformal
mapping ϕ.

The unique function f̃ ∈ H∞(D) that satisfies f̃(ϕ(λj)) = wj,
j = 1, . . . , n, and achieves the infimum over all such functions of
‖f‖L∞(D) is a scalar multiple of a finite Blaschke product:

f̃ (z) = µeiθ
n−1
∏

k=0

z − αk

1 − ᾱkz
= µ

γ0 + γ1z + . . . + γn−1z
n−1

γ̄n−1 + γ̄n−2z + . . . + γ̄0zn−1

Using second representation, Glader and Lindström showed how to compute f̃ and

‖f̃‖L∞(D) by solving a simple eigenvalue problem. Determine µ, γ0, . . . , γn−1 from

conditions f̃ (ϕ(λj)) = wj, j = 1, . . . , n.



Example Result

Suppose W (A) ⊂ D. Give sufficient conditions on the eigenvalues of A
to guarantee that GMRES(n − 1) converges; i.e., that

‖Pn−1(A)‖ ≡ min
c1,...,cn−1

‖I −
n−1
∑

j=1

cjA
j‖ < 1.

(Equivalently, give conditions in terms of λ1/ν(A), . . . , λn/ν(A)).

Recall that such conditions are not possible in terms of only
λ1, . . . , λn.



Let pn−1(z) =
∏n−1

j=1 (1 − z
λj

). Then pn−1(Λ) = µeiθB(Λ), where

B(z) =

∏n−1
j=1 (z − λj)

∏n−1
j=1 (1 − λ̄jz)

.

The condition pn−1(λn) = µeiθB(λn) implies
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∣
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For example, suppose λn is close to 1 and other evals occur in ± pairs: λj = −λn−j,
j = 1, . . . , n − 1. Assume λj = rje

iθj , where
θj ∈ [−π/12, π/12] ∪ [π − π/12, π + π/12] and rj ≥ .8. Then each pair of factors in
expression for µ is less than .74, so µ < .5 if 3 or more pairs (n ≥ 7).

To get good bounds with this approach, mapped evals must be near ∂D. This may not

be the case if S is the smallest disk containing W (A). But if W (A) is long and

narrow, and if Crouzeix’s conjecture is true, then mapped eigenvalues

probably will be near ∂D (crowding phenomenon).



Conclusions

• It is helpful if one can translate matrix approximation problems into
approximation problems in the complex plane.

• Must keep in mind that for any given f there are infinitely many
functions g such that g(A) = f (A). The minimal norm

interpolating function is a useful one.

• No one yet has succeeded at proving or disproving Crouzeix’s
conjecture. Exploring the implications will lead to useful results if
conjecture is true,... or might lead to finding a contradiction.


