Crouzeix's Conjecture and the GMRES Algorithm

Anne Greenbaum, Applied Math Dept., UW

U of M Applied Math Seminar, March, 2010

Where in the complex plane does a matrix live?
(A question of L. N. Trefethen)

Translating Matrix Problems into Problems in the Complex Plane

What can eigenvalues do?

- If A is normal (e.g., real symmetric) or near normal (well-conditionec eigenvectors) then eigenvalues describe behavior in spectral norm perfectly or almost perfectly:

$$
\|f(A)\| \approx \max _{\lambda \in \sigma(A)}|f(\lambda)|
$$

- Even if A is highly nonnormal (e.g., not diagonalizable, or diagonalizable but with eigenvectors that are almost linearly dependent), eigenvalues determine the asymptotic behavior of many functions of A:

$$
\begin{gathered}
\left\|A^{k}\right\| \rightarrow 0 \text { as } k \rightarrow \infty \text { iff } \rho(A)<1 \\
\left\|e^{t A}\right\| \rightarrow 0 \text { as } t \rightarrow \infty \text { iff } \operatorname{Re}(\sigma(A))<0
\end{gathered}
$$

What can eigenvalues NOT do?

- $e^{t A}$: Determines the stability of $y^{\prime}=A y$.
$\lim _{t \rightarrow \infty}\left\|e^{t A}\right\|=0$ if and only if the eigenvalues of A have negative real parts. But eigenvalues alone cannot distinguish:

- A^{k} : Determines stability of finite difference schemes; determines the convergence of stationary iterative methods for linear systems.
$\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ if and only if $\rho(A)<1$. But eigenvalues alone cannot distinguish:

- A^{k} : Markov chains.
$y_{0}=$ initial state; $A^{k} y_{0}=$ state after k steps. $A^{k} y_{0} \rightarrow v=$ eigenvector corresponding to eigenvalue 1 . For k large, convergence rate is determined by second largest eigenvalue. But eigenvalues cannot distinguish:

- $\min _{c_{1}, \ldots, c_{k}}\left\|I-\sum_{j=1}^{k} c_{j} A^{j}\right\|$: Residual norm in ideal GMRES.

Any possible convergence behavior of GMRES can be attained with a matrix having any given eigenvalues. (G., Pták, Strakos̆, '96)

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
0 & * & 0 & \ldots & 0 \\
0 & * & * & & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & * & * & & * \\
* & * & * & \ldots & *
\end{array}\right) \\
\mathbf{r}_{0}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), A \mathbf{r}_{0}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
*
\end{array}\right) \perp \mathbf{r}_{0}, A^{2} \mathbf{r}_{0}=\left(\begin{array}{c}
0 \\
\vdots \\
* \\
*
\end{array}\right) \perp \mathbf{r}_{0}, \ldots, A^{n-1} \mathbf{r}_{0}=\left(\begin{array}{c}
0 \\
* \\
\vdots \\
*
\end{array}\right) \perp \mathbf{r}_{0}
\end{gathered}
$$

Given an n by n matrix A, find a set $S \subset \mathbf{C}$ that can be associated with A to give more information than the spectrum alone can provide about the 2-norm of functions of A.

- Field of values or Numerical Range:

$$
W(A)=\left\{\langle A q, q\rangle: q \in \mathbf{C}^{\mathbf{n}},\langle q, q\rangle=1\right\} .
$$

- ϵ-pseudospectrum:

$$
\begin{aligned}
\sigma_{\epsilon}(A)= & \{z \in \mathbf{C}: z \text { is an eigenvalue of } A+E \\
& \text { for some } E \text { with }\|E\|<\epsilon\} .
\end{aligned}
$$

- Polynomial numerical hull of degree k :

$$
\mathcal{H}_{k}(A)=\left\{z \in \mathbf{C}:\|p(A)\| \geq|p(z)| \forall p \in \mathcal{P}_{k}\right\}
$$

In trying to relate $\|f(A)\|$ to the size of f on any set $S \subset \mathbf{C}$, however, remember that there are infinitely many functions g such that $g(A)=f(A)$; e.g., any function g of the form

$$
g(z)=f(z)+\chi(z) h(z),
$$

where χ is the minimal polynomial of A and h is any function analytic in a neighborhood of each eigenvalue of A. These functions all have the same values on $\sigma(A)$, but they differ on other sets $S \subset \mathbf{C}$. Which one should $\|f(A)\|$ be related to?

If you know that $\|f(A)\| \leq C \max _{z \in S}|f(z)|$, then choose a function g whose ∞-norm on S is minimal.

Pick-Nevanlinna Interpolation Problem

$g(A)=f(A)$ if f and g match at the eigenvalues of A and if their derivatives of orders up through $t-1$ match at eigenvalues corresponding to a $t \times t$ Jordan block. Assume for this talk that A is diagonalizable, with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Find the function $g \in \mathcal{H}^{\infty}(S)$ satisfying $g\left(\lambda_{j}\right)=f\left(\lambda_{j}\right), j=1, \ldots, n$, for which $\|g\|_{\mathcal{L}^{\infty}(S)}$ is minimal.

If $S=\mathcal{D}$, this is a Pick-Nevanlinna interpolation problem. If S is simply connected (and $S \neq \mathbf{C}$), do a conformal mapping to the unit disk. Some results also known for multiply connected regions.

Field of Values or Numerical Range

- $W(A)=\left\{\mathbf{q}^{*} A \mathbf{q}:\|\mathbf{q}\|=1\right\}$ is closed if A is finite dimensional (continuous image of compact unit ball); not necessarily so if A is an operator on infinite dimensional Hilbert space.
- $\sigma(A) \subset \overline{W(A)}$.

Proof for eigenvalues: $A \mathbf{q}=\lambda \mathbf{q},\|\mathbf{q}\|=1 \quad \Rightarrow \mathbf{q}^{*} A \mathbf{q}=\lambda$.

- $W(A)$ is a convex set (Toeplitz-Hausdorf theorem, 1918).

Method of Proof: Reduce to the 2 by 2 case.

- If A is normal then $\overline{W(A)}$ is the convex hull of $\sigma(A)$; if A is nonnormal $W(A)$ contains more.

- If $\mathbf{y}^{\prime}=A \mathbf{y}$ then for certain initial data, $\|\mathbf{y}(t)\|$ initially increases if $W(A)$ extends into rhp; $\|\mathbf{y}(t)\|$ decreases monotonically if $W(A)$ lies in lhp.

Proof:

$$
\frac{d}{d t}\langle\mathbf{y}(t), \mathbf{y}(t)\rangle=2 \operatorname{Re}\left\langle\mathbf{y}^{\prime}(t), \mathbf{y}(t)\right\rangle=2 \operatorname{Re}\langle A \mathbf{y}, \mathbf{y}\rangle
$$

- If $0 \notin W(A)$, then

$$
\min _{c_{1}}\left\|I-c_{1} A\right\| \leq \sqrt{1-d^{2} /\|A\|^{2}}
$$

where d is the distance from 0 to $W(A)$.

$$
\begin{aligned}
& \text { Proof (that } \left.\min _{c_{1}}\left\|\left(I-c_{1} A\right) \mathbf{r}_{0}\right\| \leq \sqrt{1-d^{2} /\|A\|^{2}} \cdot\left\|\mathbf{r}_{0}\right\| \forall \mathbf{r}_{0}\right) \text { : } \\
& \qquad \mathbf{r}_{1}=\mathbf{r}_{0}-\frac{\left\langle A \mathbf{r}_{0}, \mathbf{r}_{0}\right\rangle}{\left\langle A \mathbf{r}_{0}, A \mathbf{r}_{0}\right\rangle} A \mathbf{r}_{0} \\
& \qquad\left\|\mathbf{r}_{1}\right\|^{2}=\left\|\mathbf{r}_{0}\right\|^{2}-\frac{\left\langle A \mathbf{r}_{0}, \mathbf{r}_{0}\right\rangle^{2}}{\left\langle A \mathbf{r}_{0}, A \mathbf{r}_{0}\right\rangle}=\left\|\mathbf{r}_{0}\right\|^{2} \cdot\left(1-\frac{\left\langle A \mathbf{r}_{0}, \mathbf{r}_{0}\right\rangle^{2}}{\left\|\mathbf{r}_{0}\right\|^{2} \cdot\left\|A \mathbf{r}_{0}\right\|^{2}}\right) \\
& \leq\left\|\mathbf{r}_{0}\right\|^{2}\left(1-\frac{d^{2}}{\|A\|^{2}}\right) .
\end{aligned}
$$

- What if $0 \in W(A)$?

Then $\min _{c_{1}}\left\|I-c_{1} A\right\|=1$, but might have $\min _{c_{1}, \ldots, c_{k}}\left\|I-\sum_{j=1}^{k} c_{j} A^{j}\right\|<1$.

Crouzeix's Conjecture:

For any polynomial p (or any function analytic in $W(A)$),

$$
\|p(A)\| \leq 2 \max _{z \in W(A)}|p(z)| .
$$

- Constant 2 can be attained:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

$W(A)$ is disk of radius $1 / 2$ about $0 .\|A\|=1=2 \max _{z \in \mathcal{D}_{1 / 2}}|z|$.

- For more information and interesting open problems, see:
http://perso.univ-rennes1.fr/michel.crouzeix

Known Results

- Von Neumann's Inequality (1951):

$$
\|p(A)\| \leq \max _{z \in \mathcal{D}\|A\|}|p(z)|
$$

- Power Inequality (Berger/Pearcy, 1966):

$$
\left\|A^{k}\right\| \leq 2 \max _{z \in W(A)}\left|z^{k}\right|
$$

More precisely, $\nu\left(A^{k}\right) \leq \nu(A)^{k}$, where $\nu(A)$ is the numerical radius: $\max _{z \in W(A)}|z|$.

- Badea (2004), based on Ando (1973):

$$
\|p(A)\| \leq 2 \max _{z \in \mathcal{D}_{\nu(A)}}|p(z)|
$$

- Crouzeix (2004 - >) :

The conjecture is true for 2 by 2 matrices. For general n by n matrices,

$$
\|p(A)\| \leq 11.08 \max _{z \in W(A)}|p(z)|
$$

If A is a 2 by 2 matrix and $W(A)$ is a disk, then best constant is 2 ; if $W(A)$ is an ellipse with eccentricity ϵ, then the best constant is

$$
2 \exp \left(-\sum_{n \geq 1} \frac{(-1)^{n+1}}{n} \frac{2}{1+\rho^{4 n}}\right), \quad \text { where } \rho=\frac{1+\sqrt{1-\epsilon^{2}}}{\epsilon}
$$

Method of Proof: Explicitly map $W(A)$ to $\overline{\mathcal{D}}$.

Badea's Result

Ando: If $\nu(A) \leq 1$, then there is a Hermitian matrix B and a unitary matrix U such that:

$$
A=2 \cos (B) U \sin (B)
$$

Claim: A is similar to a contraction via a similarity transformation with condition number ≤ 2.

Let $g(x)=\max \{1,2|\cos x|\}$, and define $H=g(B), T=H^{-1} A H$. Then

$$
\|H\| \leq 2, \quad\left\|H^{-1}\right\| \leq 1, \quad\|\sin (B) H\| \leq 1, \quad 2\left\|H^{-1} \cos (B)\right\| \leq 1
$$

Thus $\|T\| \leq 1$.
By von Neumann's inequality,

$$
\|p(A)\| \leq\|H\|\|p(T)\|\left\|H^{-1}\right\| \leq 2\|p\|_{\mathcal{L}^{\infty}(\mathcal{D})}
$$

How does Crouzeix's conjecture or Badea's result help with the analysis of GMRES?

Equivalent statement:

$$
\|p(A)\| \leq 2 \min _{\left\{f \in \mathcal{H}^{\infty}(S): f(A)=p(A)\right\}}\|f\|_{\mathcal{L}^{\infty}(S)}
$$

where $S=W(A)$ (conjecture) or S is a disk containing $W(A)$ (theorem).

The ideal GMRES polynomial is $P_{k}(z)=1-\sum_{j=1}^{k} c_{j} z^{j}$, where c_{1}, \ldots, c_{k} minimize $\left\|P_{k}(A)\right\|$, so

$$
\left\|P_{k}(A)\right\| \leq 2 \min _{\substack{p \in \mathcal{P}_{k} \\ p(0)=1}} \min _{\left\{f \in \mathcal{H}^{\infty}(S): f(A)=p(A)\right\}}\|f\|_{\mathcal{L}^{\infty}(S)}
$$

Blaschke Products

Let w_{1}, \ldots, w_{n} be the values of a k th degree polynomial p with $p(0)=1$ at the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A. Map S to $\overline{\mathcal{D}}$ via a conformal mapping φ.

The unique function $\tilde{f} \in \mathcal{H}^{\infty}(\mathcal{D})$ that satisfies $\tilde{f}\left(\varphi\left(\lambda_{j}\right)\right)=w_{j}$, $j=1, \ldots, n$, and achieves the infimum over all such functions of $\|f\|_{\mathcal{L}^{\infty}(\mathcal{D})}$ is a scalar multiple of a finite Blaschke product:

$$
\tilde{f}(z)=\mu e^{i \theta} \prod_{k=0}^{n-1} \frac{z-\alpha_{k}}{1-\bar{\alpha}_{k} z}=\mu \frac{\gamma_{0}+\gamma_{1} z+\ldots+\gamma_{n-1} z^{n-1}}{\bar{\gamma}_{n-1}+\bar{\gamma}_{n-2} z+\ldots+\bar{\gamma}_{0} z^{n-1}}
$$

Using second representation, Glader and Lindström showed how to compute \tilde{f} and $\|\tilde{f}\|_{\mathcal{L}^{\infty}(\mathcal{D})}$ by solving a simple eigenvalue problem. Determine $\mu, \gamma_{0}, \ldots, \gamma_{n-1}$ from conditions $\tilde{f}\left(\varphi\left(\lambda_{j}\right)\right)=w_{j}, j=1, \ldots, n$.

Example Result

Suppose $W(A) \subset \mathcal{D}$. Give sufficient conditions on the eigenvalues of A to guarantee that $\operatorname{GMRES}(n-1)$ converges; i.e., that

$$
\left\|P_{n-1}(A)\right\| \equiv \min _{c_{1}, \ldots, c_{n-1}}\left\|I-\sum_{j=1}^{n-1} c_{j} A^{j}\right\|<1
$$

(Equivalently, give conditions in terms of $\left.\lambda_{1} / \nu(A), \ldots, \lambda_{n} / \nu(A)\right)$.
Recall that such conditions are not possible in terms of only $\lambda_{1}, \ldots, \lambda_{n}$.

Let $p_{n-1}(z)=\prod_{j=1}^{n-1}\left(1-\frac{z}{\lambda_{j}}\right)$. Then $p_{n-1}(\Lambda)=\mu e^{i \theta} B(\Lambda)$, where

$$
B(z)=\frac{\prod_{j=1}^{n-1}\left(z-\lambda_{j}\right)}{\prod_{j=1}^{n-1}\left(1-\bar{\lambda}_{j} z\right)} .
$$

The condition $p_{n-1}\left(\lambda_{n}\right)=\mu e^{i \theta} B\left(\lambda_{n}\right)$ implies

$$
\mu=\left|\frac{\left[\prod_{j=1}^{n-1}\left(1-\frac{\lambda_{n}}{\lambda_{j}}\right)\right]\left[\prod_{j=1}^{n-1}\left(1-\bar{\lambda}_{j} \lambda_{n}\right)\right]}{\prod_{j=1}^{n-1}\left(\lambda_{n}-\lambda_{j}\right)}\right|=\left|\prod_{j=1}^{n-1}\left(\frac{1-\bar{\lambda}_{j} \lambda_{n}}{\lambda_{j}}\right)\right| .
$$

Result holds if

$$
\left|\prod_{j=1}^{n-1}\left(\frac{1-\bar{\lambda}_{j} \lambda_{n}}{\lambda_{j}}\right)\right|<.5 .
$$

For example, suppose λ_{n} is close to 1 and other evals occur in \pm pairs: $\lambda_{j}=-\lambda_{n-j}$, $j=1, \ldots, n-1$. Assume $\lambda_{j}=r_{j} e^{i \theta_{j}}$, where $\theta_{j} \in[-\pi / 12, \pi / 12] \cup[\pi-\pi / 12, \pi+\pi / 12]$ and $r_{j} \geq$.8. Then each pair of factors in expression for μ is less than .74 , so $\mu<.5$ if 3 or more pairs $(n \geq 7)$.

To get good bounds with this approach, mapped evals must be near $\partial \mathcal{D}$. This may not be the case if S is the smallest disk containing $W(A)$. But if $W(A)$ is long and narrow, and if Crouzeix's conjecture is true, then mapped eigenvalues probably will be near $\partial \mathcal{D}$ (crowding phenomenon).

Conclusions

- It is helpful if one can translate matrix approximation problems into approximation problems in the complex plane.
- Must keep in mind that for any given f there are infinitely many functions g such that $g(A)=f(A)$. The minimal norm interpolating function is a useful one.
- No one yet has succeeded at proving or disproving Crouzeix's conjecture. Exploring the implications will lead to useful results if conjecture is true,\ldots or might lead to finding a contradiction.

