The maximal ideals in the ring $\mathcal{F}_{cont}([0, 1], \mathbf{R})$.

Suppose that R is the ring of continuous real-valued functions on the interval [0, 1]. If $u \in [0, 1]$, then we can define

$$M_u = \{ f \in R \mid f(u) = 0 \} .$$

As explained in class one day, M_u is a maximal ideal in the ring R. Furthermore, if u_1 , u_2 are in [0, 1] and $u_1 \neq u_2$, then $M_{u_1} \neq M_{u_2}$. The purpose of this hand-out is to prove the following proposition.

Proposition: Every maximal ideal of R is of the form M_u for some $u \in [0, 1]$.

Proof: Suppose that M is a maximal ideal of R. We will prove that $M \subseteq M_u$ for some $u \in [0, 1]$. Since M is maximal and $M_u \neq R$, it will then follow that $M = M_u$.

Assume to the contrary that, for all $u \in [0, 1]$, $M \not\subseteq M_u$. That assumption means that, for every $u \in [0, 1]$, there exists at least one function $f \in M$ such that $f \notin M_u$. For each $u \in [0, 1]$, pick one such f and denote it by f_u . Thus, we have $f_u \in M$ and $f_u(u) \neq 0$.

Suppose $u \in (0, 1)$. Let $c = |f_u(u)|$. Thus, $c \in \mathbf{R}$ and c > 0. Since f_u is continuous at u, it follows that there exists an open interval $(a_u, b_u) \subseteq (0, 1)$ such that $u \in (a_u, b_u)$ and such that $|f_u(x)| > c/2$ for all $x \in (a_u, b_u)$. In particular, it follows that $f_u(x) \neq 0$ for all $x \in (a_u, b_u)$.

We must also consider f_0 and f_1 , corresponding to the endpoints u = 0 and u = 1. Again, by using continuity, we see that there exist intervals $[0, b_0)$ and $(a_1, 1]$ such that $f_0(x) \neq 0$ for all $x \in [0, b_0)$ and $f_1(x) \neq 0$ for all $x \in (a_0, 1]$. We will enlarge those intervals by just choosing $a_0 < 0$ and $b_1 > 1$ arbitrarily.

With the above notation, we can say the following. If $u \in [0, 1]$, then $u \in (a_u, b_u)$ and there is an element $f_u \in M$ such that f_u is nonvanishing on $(a_u, b_u) \cap [0, 1]$. (Note that we need to take the intersection only when u = 0 or u = 1. For 0 < u < 1, we have chosen the interval (a_u, b_u) to be contained in (0, 1).)

Every point $v \in [0, 1]$ is contained in at least one of the intervals (a_u, b_u) . Namely, v is certainly contained in the interval (a_v, b_v) . Therefore, we have

$$[0, 1] \subseteq \bigcup_{u \in [0, 1]} (a_u, b_u).$$

Therefore, the collection of open intervals (a_u, b_u) forms an "open covering" of the closed interval [0, 1]. There is a theorem in analysis (or topology) which asserts that we can choose

finitely many of the above open intervals and still have a covering of the closed interval [0, 1]. (In the terminology of topology, this means that [0, 1] is a 'compact set.") That is, there exists a positive integer n and points $u_1, ..., u_n \in [0, 1]$ such that

$$[0, 1] \subseteq \bigcup_{j=1}^{n} (a_{u_j}, b_{u_j}).$$

Now consider the function $g = \sum_{j=1}^{n} f_{u_j}^2$. Thus, we have

$$g(x) = \sum_{j=1}^{n} f_{u_j}(x)^2$$

for all $x \in [0, 1]$. First of all, note that g is a continuous function on [0, 1] since each term in the above finite sum is continuous on [0, 1]. That is, $g \in R$. In fact, since each $f_{u_j} \in M$, so is its square. Hence it is clear that $g \in M$.

If $x \in [0, 1]$, then $x \in (a_{u_k}, b_{u_k})$ for at least one $k, 1 \le k \le n$. Choose such a k. The function f_{u_k} is nonvanishing on the entire interval $(a_{u_k}, b_{u_k}) \cap [0, 1]$. In particular, $f_{u_k}(x) \ne 0$. Thus, at least one of the terms is the sum defining g(x) is positive. The other terms are obviously nonnegative. Hence it is clear that g(x) > 0.

We have proved that $g \in M$ and that $g(x) \neq 0$ for all $x \in [0, 1]$. Since g is continuous on the interval [0, 1] and is nonvanishing on that entire interval, it follows from calculus that the function h on [0, 1] defined by

$$h(x) = 1/g(x)$$

for all $x \in [0, 1]$ is also a continuous function on the interval [0, 1]. That is, $h \in R$. We have $gh = 1_R$, the constant function 1, and so it follows that g is an invertible element of R. However, this is impossible since $g \in M$ and $M \neq R$. This is a contradiction. Thus, a maximal ideal M which is not of the form M_u for some $u \in [0, 1]$ cannot exist. QED

The maximal ideals in the ring $\mathcal{F}_{cont}(\ (0,\ 1),\ \mathbf{R}\)$.

The above proposition fails to be true for the ring $R = \mathcal{F}_{cont}(0, 1)$, \mathbf{R}). The proof breaks down because the open interval (0, 1) is not compact. As an example, the open intervals $(\frac{1}{n}, 1)$, where n varies over all integers ≥ 2 , form a covering of (0, 1), but it is not possible to choose finitely many of those intervals and still have a covering of (0, 1).

It is true that, for each $u \in (0, 1)$, the set M_u (consisting of the elements of R which vanish at u) is a maximal ideal of R. However, there do exist maximal ideals M in that ring which are not of the form M_u for any $u \in (0, 1)$. This is proved as follows. Let

$$I = \{ f \in R \mid f(\frac{1}{n}) = 0 \text{ for all but finitely many } n \in \mathbb{N} \}$$
.

Note that $I \neq R$ since the constant function 1_R is not in I. Also, consider the function g defined by $g(x) = \sin(\pi/x)$ for all $x \in (0, 1)$. That function vanishes at all the points $x = \frac{1}{n}$ for $n \in \mathbb{N}$. Thus, $g \in I$. Also, for any $m \in \mathbb{N}$, let h_m be defined by

$$h_m(x) = \begin{cases} \sin(\pi/x) & \text{for } x \leq \frac{1}{m} \\ . & . \\ x - \frac{1}{m} & \text{for } x > \frac{1}{m} \end{cases}$$

Then $h_m \in R$, $h_m(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$ such that $n \geq m$, but $h_m(\frac{1}{n}) \neq 0$ for $n \in \mathbb{N}$ such that n < m. Also, $h_m(x) \neq 0$ for all $x \in (0, 1)$ not of the form $x = \frac{1}{n}$ for $n \in \mathbb{N}$.

It follows that $h_m(x) \in I$ for all $m \in \mathbb{N}$. However, for any $u \in (0, 1)$, it follows that $h_m(x) \notin M_u$ if m is chosen sufficiently large. Therefore, for any $u \in (0, 1)$, it follows that $I \nsubseteq M_u$. However, according to theorem 6 on the handout "Important theorems ...," there does exist at least one maximal ideal M of R containing I. Such a maximal ideal M cannot be of the form M_u for any $u \in (0, 1)$.

We haven't proved theorem 6 in class. The proof uses something called "Zorn's Lemma," a result from set theory which is equivalent to the Axiom of Choice. I will state Zorn's Lemma below. (It isn't the most general form.) We will need some terminology to state it.

Suppose that S is a nonempty set and \mathcal{D} is a nonempty collection of subsets of S. Suppose that \mathcal{C} is a nonempty subset of \mathcal{D} with the property that if $U, V \in \mathcal{C}$, then either $U \subseteq V$ or $V \subseteq U$. We will then call \mathcal{C} a "chain in \mathcal{D} ". Suppose that $M \in \mathcal{D}$. We say that M is a "maximal element of \mathcal{D} " if M has the following property: If $U \in \mathcal{D}$ and $M \subseteq U$, then U = M.

Zorn's Lemma: Assume that, for every chain C in D, the set $\bigcup_{U \in C} U$ is in D. Then D has at least one maximal element.

To prove theorem 6, let I be any ideal of R, where R is a ring with unit. Assume that $I \neq R$. This means that $1_R \notin I$. We consider the following collection of subsets of R:

$$\mathcal{D} = \{ J \mid J \text{ is an ideal of } R \text{ such that } I \subseteq J \text{ and } 1_R \notin J \}$$

It is clear that \mathcal{D} is nonempty because I is an element of \mathcal{D} . It will be left as an exercise to prove that for every chain \mathcal{C} in \mathcal{D} , the set $\bigcup_{J\in\mathcal{C}}J$ is an ideal of R containing I, but not containing 1_R . Therefore, according to Zorn's Lemma, \mathcal{D} has at least one maximal element. Such a maximal element will be an ideal J of R containing I which has the following property: if J' is an ideal of R such that $J\subseteq J'$ and $1_R\not\in J'$, then J'=J. That implies that J will be a maximal ideal of R containing I. Hence, indeed, there exist a maximal ideal of R containing I. This proves theorem 6.

As a final remark concerning the above example, apart from the maximal ideals M_u , it does not seem possible to describe the other maximal ideals M in any concrete or explicit way. Also, R/M will be a field, of course, but I don't know what field it will be.