The maximal ideals in the ring fcont( 0, 1], R )

Suppose that R is the ring of continuous real-valued functions on the interval [0, 1]. If
u € [0, 1], then we can define

My, = {feR|flu)=0}.

As explained in class one day, M, is a maximal ideal in the ring R. Furthermore, if u;, us
are in [0, 1] and uy # ug, then M,, # M,,. The purpose of this hand-out is to prove the
following proposition.

Proposition: Every mazimal ideal of R is of the form M, for some u € [0, 1].

Proof: Suppose that M is a maximal ideal of R. We will prove that M C M, for some
u € [0, 1]. Since M is maximal and M, # R, it will then follow that M = M,,.

Assume to the contrary that, for all w € [0, 1], M € M,. That assumption means that,
for every u € [0, 1], there exists at least one function f € M such that f ¢ M,. For each
u € [0, 1], pick one such f and denote it by f,. Thus, we have f, € M and f,(u) # 0.

Suppose u € (0, 1). Let ¢ = |f,(u)|. Thus, ¢ € R and ¢ > 0. Since f, is continuous at
u, it follows that there exists an open interval (a,, b,) C (0, 1) such that u € (ay,b,) and
such that |f,(z)| > ¢/2 for all x € (ay, b,). In particular, it follows that f,(z) # 0 for all
z € (ay, by).

We must also consider f, and f;, corresponding to the endpoints © = 0 and v = 1. Again,
by using continuity, we see that there exist intervals [0, by) and (a;, 1] such that fo(z) # 0
for all z € [0, by) and fi(z) # 0 for all z € (ag, 1]. We will enlarge those intervals by just
choosing ay < 0 and b; > 1 arbitrarily.

With the above notation, we can say the following. If u € [0, 1], then u € (ay, b,) and there
is an element f, € M such that f, is nonvanishing on (a,, b,) N[0, 1]. (Note that we need to
take the intersection only when v = 0 or u = 1. For 0 < u < 1, we have chosen the interval
(@y, by) to be contained in (0, 1).)

Every point v € [0, 1] is contained in at least one of the intervals (a,, b,). Namely, v is
certainly contained in the interval (a,, b,). Therefore, we have

0,1 ¢ U (e b).

u€l0, 1]

Therefore, the collection of open intervals (a,, b,) forms an “open covering” of the closed
interval [0, 1]. There is a theorem in analysis (or topology) which asserts that we can choose



finitely many of the above open intervals and still have a covering of the closed interval [0, 1].
(In the terminology of topology, this means that [0, 1] is a ‘compact set.”) That is, there
exists a positive integer n and points uy, ..., u, € [0, 1] such that

n

0,11 ¢ J(ay, by,) -

i=1

Now consider the function g = Z?Zl fgj. Thus, we have

o@) = 3 fuy(aP

for all z € [0, 1]. First of all, note that g is a continuous function on [0, 1] since each term
in the above finite sum is continuous on [0, 1]. That is, g € R. In fact, since each Ju; €M,
so is its square. Hence it is clear that g € M.

If x € [0,1], then = € (ay,, by,) for at least one k, 1 < k < n. Choose such a k. The function
fu, is nonvanishing on the entire interval (a,,, by, ) N[0, 1]. In particular, f,, (z) # 0. Thus,
at least one of the terms is the sum defining g(x) is positive. The other terms are obviously
nonnegative. Hence it is clear that g(z) > 0.

We have proved that ¢ € M and that g(z) # 0 for all x € [0, 1]. Since g is continuous on
the interval [0, 1] and is nonvanishing on that entire interval, it follows from calculus that
the function h on [0, 1] defined by

h(z) = 1/g(z)

for all z € [0, 1] is also a continuous function on the interval [0, 1]. That is, h € R. We
have gh = 1g, the constant function 1, and so it follows that ¢ is an invertible element of
R. However, this is impossible since ¢ € M and M # R. This is a contradiction. Thus, a
maximal ideal M which is not of the form M, for some u € [0, 1] cannot exist. QED



The maximal ideals in the ring fcont( 0, 1), R )

The above proposition fails to be true for the ring R = fcont( (0, 1), R ) The proof breaks
down because the open interval (0, 1) is not compact. As an example, the open intervals
(£, 1), where n varies over all integers > 2, form a covering of (0, 1), but it is not possible
to choose finitely many of those intervals and still have a covering of (0, 1).

It is true that, for each u € (0, 1), the set M, (consisting of the elements of R which vanish
at u) is a maximal ideal of R. However, there do exist maximal ideals M in that ring which

are not of the form M, for any u € (0, 1). This is proved as follows. Let
I = {feR|f(£)=0 for all but finitely many n € N } .

Note that I # R since the constant function 1g is not in /. Also, consider the function g
defined by g(x) = sin(n/z) for all z € (0, 1). That function vanishes at all the points x =
for n € N. Thus, g € I. Also, for any m € N, let h,, be defined by

S|=

sin(m/z) forz <+
hin(z) =

1 1
r—-  forz>_

Then hm, € R, hy(:) =0 for all n € N such that n > m, but hy,(2) # 0 for n € N such
that n < m. Also, hp(x) # 0 for all z € (0, 1) not of the form z = = for n € N,

It follows that h,,(z) € I for all m € N. However, for any u € (0, 1), it follows that
hm(x) ¢ M, if m is chosen sufficiently large. Therefore, for any u € (0, 1), it follows that
1 ¢ M,. However, according to theorem 6 on the handout “Important theorems ...,” there
does exist at least one maximal ideal M of R containing /. Such a maximal ideal M cannot
be of the form M, for any u € (0, 1).

We haven’t proved theorem 6 in class. The proof uses something called “Zorn’s Lemma,” a
result from set theory which is equivalent to the Axiom of Choice. I will state Zorn’s Lemma
below. (It isn’t the most general form.) We will need some terminology to state it.

Suppose that S is a nonempty set and D is a nonempty collection of subsets of S. Suppose
that C is a nonempty subset of D with the property that if U,V € C, then either U C V
or V C U. We will then call C a “chain in D” . Suppose that M € D. We say that M
is a “mazimal element of D” if M has the following property: If U € D and M C U, then
U=M.

Zorn’s Lemma: Assume that, for every chain C in D, the set |y, U is in D. Then D has
at least one mazrimal element.



To prove theorem 6, let I be any ideal of R, where R is a ring with unit. Assume that I # R.
This means that 1z & I. We consider the following collection of subsets of R:

D = {J|Jisanideal of R suchthat I CJ and 1p & J}

It is clear that D is nonempty because I is an element of D. It will be left as an exercise
to prove that for every chain C in D, the set |, J is an ideal of R containing I, but not
containing 1. Therefore, according to Zorn’s Lemma, D has at least one maximal element.
Such a maximal element will be an ideal J of R containing I which has the following property:
if J' is an ideal of R such that J C J'  and 1y ¢ J', then J' = J. That implies that J will be a
maximal ideal of R containing /. Hence, indeed, there exist a maximal ideal of R containing
I. This proves theorem 6.

As a final remark concerning the above example, apart from the maximal ideals M,, it does
not seem possible to describe the other maximal ideals M in any concrete or explicit way.
Also, R/M will be a field, of course, but I don’t know what field it will be.



