The primitive element theorem.

We assume that E and F are subfields of an algebraic closed field K on this handout.

The primitive element theorem. Suppose that E is a field of characteristic zero and that F is a finite extension of E. Then $F = E(\theta)$ for some element θ in F.

Proof. The key step is to prove that if $F = E(\alpha, \beta)$, then $F = E(\theta)$ for some element θ in F. We will find such a θ of the following form:

$$\theta = \alpha + e\beta$$

where $e \in E$. Since char(E) = 0, the field E is infinite. We will actually prove that $F = E(\theta)$ for all but finitely many $e \in E$.

Let $f(x) \in E[x]$ be the minimal polynomial for α over E. Let $g(x) \in E[x]$ be the minimal polynomial for β over E. Then f(x) and g(x) are both irreducible over E. We have

$$f(x) = \prod_{i=1}^{m} (x - \alpha_i),$$
 $g(x) = \prod_{j=1}^{n} (x - \beta_j),$

where m = deg(f(x)), n = deg(g(x)), $\alpha_1, ...\alpha_m$ are distinct elements of K, and $\beta_1, ..., \beta_n$ are distinct elements of K. This follows from the facts that char(E) = 0, f(x) and g(x) are irreducible over E, and therefore cannot have a multiple root in K.

We assume that the indexing is such that $\alpha = \alpha_1$ and $\beta = \beta_1$. For any i, j satisfying $1 \le i \le m$, $2 \le j \le n$, the equation

$$\alpha_i + e\beta_i = \alpha + e\beta$$

holds for exactly one $e \in K$ and therefore for at most one $e \in E$. This is true because $\beta_j \neq \beta$ for $j \geq 2$. Since E is infinite, we can therefore suppose from here on that e is chosen so that none of the above equations hold. That is, we can assume that

$$\theta \neq \alpha_i + e\beta_i$$
 for all i, j satisfying $1 \leq i \leq m$, $2 \leq j \leq n$.

Let $F' = E(\theta)$, a subfield of F. Consider the polynomial $h(x) = f(\theta - ex)$. Since $e, \theta \in F'$ and $f(x) \in E[x] \subseteq F'[x]$, it follows that $h(x) \in F'[x]$. Notice also that

$$F = E(\alpha, \beta) = E(\alpha, \beta, \alpha + e\beta) = E(\beta, \alpha + e\beta) = E(\theta, \beta) = F'(\beta)$$

We will prove that F = F' by showing that [F : F'] = 1. Let p(x) denote the minimal polynomial for β over F'. Since $F = F'(\beta)$, we can say that [F : F'] = deg(p(x)). Hence we must show that deg(p(x)) = 1.

Note that β is a root of g(x). Since $g(x) \in E[x] \subseteq F'[x]$, it follows that p(x)|g(x) in F'[x]. Therefore, the set of roots of p(x) in K must be a subset of the set $\{\beta_1, ..., \beta_n\}$. However, β is also root of h(x) because

$$h(\beta) = f(\theta - e\beta) = f(\alpha + e\beta - e\beta) = f(\alpha) = 0_K$$

using the fact that α is one of the roots of f(x) in K. Hence, since $h(x) \in F'[x]$, we can also say that p(x)|h(x) in F'[x].

Suppose that $2 \le j \le n$. We will show that β_j is not a root of h(x). To see this, note that $h(\beta_j) = f(\theta - e\beta_j)$. Thus,

$$h(\beta_i) = 0_K \implies f(\theta - e\beta_i) = 0_K \implies \theta - e\beta_i = \alpha_i$$

for some index $i, 1 \leq i \leq m$. This is because the roots of f(x) in K are $\alpha_1, ..., \alpha_m$. But then we would have $\theta = \alpha_i + e\beta_j$, contrary to the way that we chose e. It follows that, if $2 \leq j \leq n$, then β_j is not a root of p(x).

In summary, every root of p(x) in K must be contained in the set $\{\beta_1, ..., \beta_n\}$, but the elements $\beta_2, ..., \beta_n$ of that set are actually not roots of p(x). Therefore, p(x) has exactly one root in K, namely $\beta_1 = \beta$. Since p(x) has no multiple roots, we can conclude that deg(p(x)) = 1, as we wanted to prove. Therefore, $F = F' = E(\theta)$.

To finish the proof of the theorem, it is clear that we can find a finite subset $\{\gamma_1, ..., \gamma_k\}$ of F so that $F = E(\gamma_1, ..., \gamma_k)$. We will refer to such a set $\{\gamma_1, ..., \gamma_k\}$ as a "generating set" for the extension F/E. For example, we could simply take $\{\gamma_1, ..., \gamma_k\}$ to be a basis for F as a vector space over E. Suppose that $\{\gamma_1, ..., \gamma_k\}$ is a generating set for the extension F/E and that k > 1. We will show that we can find another generating set for F/E which has only k-1 elements. Consider the field $E(\gamma_1, \gamma_2)$, which is a finite extension of E. Taking $\alpha = \gamma_1$ and $\beta = \gamma_2$, the result proved above shows that we have $E(\gamma_1, \gamma_2) = E(\theta_1)$ for some suitably chosen element θ_1 in K. If k = 2, we are done. If k > 2, then we have

$$F = E(\gamma_1, ..., \gamma_k) = E(\gamma_1, \gamma_2)(\gamma_3, ..., \gamma_k) = E(\theta_1, \gamma_3, ..., \gamma_k)$$

and so we do have a generating set $\{\theta_1, \gamma_3, ..., \gamma_k\}$ with just k-1 elements. Continuing, we eventually find a generating set for F/E with just one element. This proves the Primitive Element Theorem.