The primitive element theorem.

We assume that F and F' are subfields of an algebraic closed field K on this handout.

The primitive element theorem. Suppose that E is a field of characteristic zero and
that F' is a finite extension of E. Then F' = E(f) for some element 6 in F.

Proof. The key step is to prove that if F' = E(«, ), then F' = E() for some element 6
in F. We will find such a 6 of the following form:

0=a+el

where e € E. Since char(E) = 0, the field F is infinite. We will actually prove that F' = E(0)
for all but finitely many e € F.

Let f(z) € E[x] be the minimal polynomial for a over E. Let g(z) € E[x] be the minimal
polynomial for 5 over E. Then f(z) and g(x) are both irreducible over E. We have

f($) = H(m_ai)a g(.ﬁlﬁ) = H(x_ﬁj) )

where m = deg(f(m)), n= deg(g(x)), ai, ..., are distinct elements of K, and (i, ..., O,
are distinct elements of K. This follows from the facts that char(E) = 0, f(x) and g(z) are
irreducible over F, and therefore cannot have a multiple root in K.

We assume that the indexing is such that @ = «; and § = ;. For any ¢, satisfying
1 <1 <m, 2 <j <n, the equation

a;+ef; = a+ef

holds for exactly one e € K and therefore for at most one e € E. This is true because 3; # 3
for j > 2. Since F is infinite, we can therefore suppose from here on that e is chosen so that
none of the above equations hold. That is, we can assume that

0 # o;+eB; foralli,jsatisfying 1<i<m, 2<j<n .

Let F' = E(6), a subfield of F. Consider the polynomial h(z) = f(6 — ex). Since e,0 € F’
and f(z) € E[z] C F'[x], it follows that h(z) € F’[x]. Notice also that

F = B(a,B) = B(a,B,a+eB) = E(B,a+eB) = E(9,8)=F(B)



We will prove that F' = F’ by showing that [F' : F'] = 1. Let p(z) denote the minimal
polynomial for § over F’. Since F' = F'(3), we can say that [F : F'] = deg(p(x)). Hence we
must show that deg(p(z)) = 1.

Note that [ is a root of g(x). Since g(z) € E[z] C F'[z], it follows that p(z)|g(z) in F'[z].
Therefore, the set of roots of p(z) in K must be a subset of the set {3, ..., 5,}. However,
is also root of h(x) because

hp) = fl0—eb) = flatef—ef) = fla) = Ok,

using the fact that « is one of the roots of f(z) in K. Hence, since h(z) € F'[z], we can also
say that p(z)|h(x) in F'[z].

Suppose that 2 < j < n. We will show that (; is not a root of h(z). To see this, note that
h(B;) = f(0—ep;). Thus,

h(ﬁj) = OK = f(9 — eﬁj) = OK == - 65]' = Q4

for some index i, 1 < i < m. This is because the roots of f(z) in K are oy, ..., . But
then we would have 0 = «a; + ef3;, contrary to the way that we chose e. It follows that, if
2 < j <mn, then f; is not a root of p(x).

In summary, every root of p(x) in K must be contained in the set {0, ..., 3,}, but the
elements (s, ..., 3, of that set are actually not roots of p(z). Therefore, p(x) has exactly
one root in K, namely 3; = (. Since p(z) has no multiple roots, we can conclude that
deg (p(:v)) = 1, as we wanted to prove. Therefore, F' = F' = E(6).

To finish the proof of the theorem, it is clear that we can find a finite subset {71, ..., 7%} of
F so that F' = E(y1,...,7%). We will refer to such a set {71, ..., } as a “generating set” for
the extension F//E. For example, we could simply take {71, ...,7x} to be a basis for F' as a
vector space over E. Suppose that {71, ..., 7} is a generating set for the extension F//E and
that £ > 1. We will show that we can find another generating set for F'/E which has only
k — 1 elements. Consider the field E(v1,72), which is a finite extension of E. Taking a = 4
and 3 = 79, the result proved above shows that we have E(v;,72) = E(6;) for some suitably
chosen element 6; in K. If k = 2, we are done. If k£ > 2, then we have

F = E(’Yla77/€) - E(’Ylﬂ’yQ)(’y?ﬂ"'?’Yk) - E(017737"'7/y]€> )

and so we do have a generating set {61, 7s, ..., 7} with just £ — 1 elements. Continuing, we
eventually find a generating set for F'/E with just one element. This proves the Primitive
Element Theorem.



