
The primitive element theorem.

We assume that E and F are subfields of an algebraic closed field K on this handout.

The primitive element theorem. Suppose that E is a field of characteristic zero and
that F is a finite extension of E. Then F = E(θ) for some element θ in F .

Proof. The key step is to prove that if F = E(α, β), then F = E(θ) for some element θ
in F . We will find such a θ of the following form:

θ = α + eβ

where e ∈ E. Since char(E) = 0, the field E is infinite. We will actually prove that F = E(θ)
for all but finitely many e ∈ E.

Let f(x) ∈ E[x] be the minimal polynomial for α over E. Let g(x) ∈ E[x] be the minimal
polynomial for β over E. Then f(x) and g(x) are both irreducible over E. We have

f(x) =
m
∏

i=1

(x − αi), g(x) =
n

∏

j=1

(x − βj) ,

where m = deg
(

f(x)
)

, n = deg
(

g(x)
)

, α1, ...αm are distinct elements of K, and β1, ..., βn

are distinct elements of K. This follows from the facts that char(E) = 0, f(x) and g(x) are
irreducible over E, and therefore cannot have a multiple root in K.

We assume that the indexing is such that α = α1 and β = β1. For any i, j satisfying
1 ≤ i ≤ m, 2 ≤ j ≤ n, the equation

αi + eβj = α + eβ

holds for exactly one e ∈ K and therefore for at most one e ∈ E. This is true because βj 6= β
for j ≥ 2. Since E is infinite, we can therefore suppose from here on that e is chosen so that
none of the above equations hold. That is, we can assume that

θ 6= αi + eβj for all i, j satisfying 1 ≤ i ≤ m, 2 ≤ j ≤ n .

Let F ′ = E(θ), a subfield of F . Consider the polynomial h(x) = f(θ − ex). Since e, θ ∈ F ′

and f(x) ∈ E[x] ⊆ F ′[x], it follows that h(x) ∈ F ′[x]. Notice also that

F = E(α, β) = E(α, β, α + eβ) = E(β, α + eβ) = E(θ, β) = F ′(β)



We will prove that F = F ′ by showing that [F : F ′] = 1. Let p(x) denote the minimal
polynomial for β over F ′. Since F = F ′(β), we can say that [F : F ′] = deg

(

p(x)
)

. Hence we
must show that deg

(

p(x)
)

= 1.

Note that β is a root of g(x). Since g(x) ∈ E[x] ⊆ F ′[x], it follows that p(x)|g(x) in F ′[x].
Therefore, the set of roots of p(x) in K must be a subset of the set {β1, ..., βn}. However, β
is also root of h(x) because

h(β) = f(θ − eβ) = f(α + eβ − eβ) = f(α) = 0K ,

using the fact that α is one of the roots of f(x) in K. Hence, since h(x) ∈ F ′[x], we can also
say that p(x)|h(x) in F ′[x].

Suppose that 2 ≤ j ≤ n. We will show that βj is not a root of h(x). To see this, note that
h(βj) = f(θ − eβj). Thus,

h(βj) = 0K =⇒ f(θ − eβj) = 0K =⇒ θ − eβj = αi

for some index i, 1 ≤ i ≤ m. This is because the roots of f(x) in K are α1, ..., αm. But
then we would have θ = αi + eβj, contrary to the way that we chose e. It follows that, if
2 ≤ j ≤ n, then βj is not a root of p(x).

In summary, every root of p(x) in K must be contained in the set {β1, ..., βn}, but the
elements β2, ..., βn of that set are actually not roots of p(x). Therefore, p(x) has exactly
one root in K, namely β1 = β. Since p(x) has no multiple roots, we can conclude that
deg

(

p(x)
)

= 1, as we wanted to prove. Therefore, F = F ′ = E(θ).

To finish the proof of the theorem, it is clear that we can find a finite subset {γ1, ..., γk} of
F so that F = E(γ1, ..., γk). We will refer to such a set {γ1, ..., γk} as a “generating set” for
the extension F/E. For example, we could simply take {γ1, ..., γk} to be a basis for F as a
vector space over E. Suppose that {γ1, ..., γk} is a generating set for the extension F/E and
that k > 1. We will show that we can find another generating set for F/E which has only
k − 1 elements. Consider the field E(γ1, γ2), which is a finite extension of E. Taking α = γ1

and β = γ2, the result proved above shows that we have E(γ1, γ2) = E(θ1) for some suitably
chosen element θ1 in K. If k = 2, we are done. If k > 2, then we have

F = E(γ1, ..., γk) = E(γ1, γ2)(γ3, ..., γk) = E(θ1, γ3, ..., γk) ,

and so we do have a generating set {θ1, γ3, ..., γk} with just k − 1 elements. Continuing, we
eventually find a generating set for F/E with just one element. This proves the Primitive
Element Theorem.


