The primitive element theorem.

We assume that E and F are subfields of an algebraic closed field K on this handout.
The primitive element theorem. Suppose that E is a field of characteristic zero and that F is a finite extension of E. Then $F=E(\theta)$ for some element θ in F.

Proof. The key step is to prove that if $F=E(\alpha, \beta)$, then $F=E(\theta)$ for some element θ in F. We will find such a θ of the following form:

$$
\theta=\alpha+e \beta
$$

where $e \in E$. Since $\operatorname{char}(E)=0$, the field E is infinite. We will actually prove that $F=E(\theta)$ for all but finitely many $e \in E$.
Let $f(x) \in E[x]$ be the minimal polynomial for α over E. Let $g(x) \in E[x]$ be the minimal polynomial for β over E. Then $f(x)$ and $g(x)$ are both irreducible over E. We have

$$
f(x)=\prod_{i=1}^{m}\left(x-\alpha_{i}\right), \quad g(x)=\prod_{j=1}^{n}\left(x-\beta_{j}\right)
$$

where $m=\operatorname{deg}(f(x)), \quad n=\operatorname{deg}(g(x)), \quad \alpha_{1}, \ldots \alpha_{m}$ are distinct elements of K, and $\beta_{1}, \ldots, \beta_{n}$ are distinct elements of K. This follows from the facts that $\operatorname{char}(E)=0, f(x)$ and $g(x)$ are irreducible over E, and therefore cannot have a multiple root in K.
We assume that the indexing is such that $\alpha=\alpha_{1}$ and $\beta=\beta_{1}$. For any i, j satisfying $1 \leq i \leq m, 2 \leq j \leq n$, the equation

$$
\alpha_{i}+e \beta_{j}=\alpha+e \beta
$$

holds for exactly one $e \in K$ and therefore for at most one $e \in E$. This is true because $\beta_{j} \neq \beta$ for $j \geq 2$. Since E is infinite, we can therefore suppose from here on that e is chosen so that none of the above equations hold. That is, we can assume that

$$
\theta \neq \alpha_{i}+e \beta_{j} \quad \text { for all } i, j \text { satisfying } 1 \leq i \leq m, \quad 2 \leq j \leq n
$$

Let $F^{\prime}=E(\theta)$, a subfield of F. Consider the polynomial $h(x)=f(\theta-e x)$. Since $e, \theta \in F^{\prime}$ and $f(x) \in E[x] \subseteq F^{\prime}[x]$, it follows that $h(x) \in F^{\prime}[x]$. Notice also that

$$
F=E(\alpha, \beta)=E(\alpha, \beta, \alpha+e \beta)=E(\beta, \alpha+e \beta)=E(\theta, \beta)=F^{\prime}(\beta)
$$

We will prove that $F=F^{\prime}$ by showing that $\left[F: F^{\prime}\right]=1$. Let $p(x)$ denote the minimal polynomial for β over F^{\prime}. Since $F=F^{\prime}(\beta)$, we can say that $\left[F: F^{\prime}\right]=\operatorname{deg}(p(x))$. Hence we must show that $\operatorname{deg}(p(x))=1$.
Note that β is a root of $g(x)$. Since $g(x) \in E[x] \subseteq F^{\prime}[x]$, it follows that $p(x) \mid g(x)$ in $F^{\prime}[x]$. Therefore, the set of roots of $p(x)$ in K must be a subset of the set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. However, β is also root of $h(x)$ because

$$
h(\beta)=f(\theta-e \beta)=f(\alpha+e \beta-e \beta)=f(\alpha)=0_{K},
$$

using the fact that α is one of the roots of $f(x)$ in K. Hence, since $h(x) \in F^{\prime}[x]$, we can also say that $p(x) \mid h(x)$ in $F^{\prime}[x]$.
Suppose that $2 \leq j \leq n$. We will show that β_{j} is not a root of $h(x)$. To see this, note that $h\left(\beta_{j}\right)=f\left(\theta-e \beta_{j}\right)$. Thus,

$$
h\left(\beta_{j}\right)=0_{K} \quad \Longrightarrow \quad f\left(\theta-e \beta_{j}\right)=0_{K} \quad \Longrightarrow \quad \theta-e \beta_{j}=\alpha_{i}
$$

for some index $i, 1 \leq i \leq m$. This is because the roots of $f(x)$ in K are $\alpha_{1}, \ldots, \alpha_{m}$. But then we would have $\theta=\alpha_{i}+e \beta_{j}$, contrary to the way that we chose e. It follows that, if $2 \leq j \leq n$, then β_{j} is not a root of $p(x)$.
In summary, every root of $p(x)$ in K must be contained in the set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$, but the elements $\beta_{2}, \ldots, \beta_{n}$ of that set are actually not roots of $p(x)$. Therefore, $p(x)$ has exactly one root in K, namely $\beta_{1}=\beta$. Since $p(x)$ has no multiple roots, we can conclude that $\operatorname{deg}(p(x))=1$, as we wanted to prove. Therefore, $F=F^{\prime}=E(\theta)$.

To finish the proof of the theorem, it is clear that we can find a finite subset $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ of F so that $F=E\left(\gamma_{1}, \ldots, \gamma_{k}\right)$. We will refer to such a set $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ as a "generating set" for the extension F / E. For example, we could simply take $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ to be a basis for F as a vector space over E. Suppose that $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ is a generating set for the extension F / E and that $k>1$. We will show that we can find another generating set for F / E which has only $k-1$ elements. Consider the field $E\left(\gamma_{1}, \gamma_{2}\right)$, which is a finite extension of E. Taking $\alpha=\gamma_{1}$ and $\beta=\gamma_{2}$, the result proved above shows that we have $E\left(\gamma_{1}, \gamma_{2}\right)=E\left(\theta_{1}\right)$ for some suitably chosen element θ_{1} in K. If $k=2$, we are done. If $k>2$, then we have

$$
F=E\left(\gamma_{1}, \ldots, \gamma_{k}\right)=E\left(\gamma_{1}, \gamma_{2}\right)\left(\gamma_{3}, \ldots, \gamma_{k}\right)=E\left(\theta_{1}, \gamma_{3}, \ldots, \gamma_{k}\right)
$$

and so we do have a generating set $\left\{\theta_{1}, \gamma_{3}, \ldots, \gamma_{k}\right\}$ with just $k-1$ elements. Continuing, we eventually find a generating set for F / E with just one element. This proves the Primitive Element Theorem.

