THE RANGE AND THE NULL SPACE OF A MATRIX

Suppose that A is an $m \times n$ matrix with real entries. There are two important subspaces associated to the matrix A. One is a subspace of \boldsymbol{R}^{m}. The other is a subspace of \boldsymbol{R}^{n}. We will assume throughout that all vectors have real entries.

THE RANGE OF A.

The range of A is a subspace of \boldsymbol{R}^{m}. We will denote this subspace by $\mathcal{R}(A)$. Here is the definition:

$$
\mathcal{R}(A)=\left\{Y: \text { there exists at least one } X \text { in } \boldsymbol{R}^{n} \text { such that } A X=Y\right\}
$$

THEOREM. If A is an $m \times n$ matrix, then $\mathcal{R}(A)$ is a subspace of \boldsymbol{R}^{m}.
Proof. First of all, notice that if Y is in $\mathcal{R}(A)$, then $Y=A X$ for some X in \boldsymbol{R}^{n}. Since A is $m \times n$ and X is $n \times 1, Y=A X$ will be $m \times 1$. That is, Y will be in \boldsymbol{R}^{m}. This shows that the set $\mathcal{R}(A)$ is a subset of \boldsymbol{R}^{m}.

Now we verify the three subspace requirements. Let $W=\mathcal{R}(A)$.
(a) Let $\mathbf{0}_{m}$ denote the zero vector in \boldsymbol{R}^{m} and $\mathbf{0}_{n}$ denote the zero vector in \boldsymbol{R}^{n}. Notice that $A \mathbf{0}_{n}=\mathbf{0}_{m}$. Hence $A X=\mathbf{0}_{m}$ is satisfied by at least one X in \boldsymbol{R}^{n}, namely $X=\mathbf{0}_{n}$. Thus, $\mathbf{0}_{m}$ is indeed in W and hence requirement (a) is valid for W.
(b) Suppose that Y_{1} and Y_{2} are in W. This means that each of the matrix equations $A X=Y_{1}$ and $A X=Y_{2}$ has at least one solution. Suppose that $X=X_{1}$ is a vector in \boldsymbol{R}^{n} satisfying the first equation. That is, $A X_{1}=Y_{1}$. Suppose that $X=X_{2}$ is a vector in \boldsymbol{R}^{n} satisfying the second equation. That is, $A X_{2}=Y_{2}$. Now consider the matrix equation $A X=Y_{1}+Y_{2}$. Let $X=X_{1}+X_{2}$, a vector in \boldsymbol{R}^{n}. Then we have

$$
A X=A\left(X_{1}+X_{2}\right)=A X_{1}+A X_{2}=Y_{1}+Y_{2}
$$

Therefore, $Y_{1}+Y_{2}$ is in W. This shows that W is closed under addition and so requirement (b) is valid for W.
(c) Suppose that Y_{1} is in W. Let c be any scalar. Since Y_{1} is in W, there exists a vector X_{1} in \boldsymbol{R}^{n} such that $A X_{1}=Y_{1}$. Now consider the matrix equation $A X=c Y_{1}$. Let $X=c X_{1}$, a vector in \boldsymbol{R}^{n}. Then we have

$$
A X=A\left(c X_{1}\right)=c\left(A X_{1}\right)=c Y_{1}
$$

Therefore, $c Y_{1}$ is in W. Therefore, $Y_{1}+Y_{2}$ is in W. This shows that W is closed under scalar multiplication and so requirement (c) is valid for W.

We have proved that $W=\mathcal{R}(A)$ is a subset of \boldsymbol{R}^{m} satisfying the three subspace requirements. Hence $\mathcal{R}(A)$ is a subspace of \boldsymbol{R}^{m}.

THE NULL SPACE OF A.

The null space of A is a subspace of \boldsymbol{R}^{n}. We will denote this subspace by $\mathcal{N}(A)$. Here is the definition:

$$
\mathcal{N}(A)=\left\{X: A X=\mathbf{0}_{m}\right\}
$$

THEOREM. If A is an $m \times n$ matrix, then $\mathcal{N}(A)$ is a subspace of \boldsymbol{R}^{n}.
Proof. First of all, notice that if X is in $\mathcal{N}(A)$, then $A X=\mathbf{0}_{m}$. Since A is $m \times n$ and $A X$ is $m \times 1$, it follows that X must be $n \times 1$. That is, X is in \boldsymbol{R}^{n}. Therefore, $\mathcal{N}(A)$ is a subset of \boldsymbol{R}^{n}.
Now we verify the three subspace requirements. Let $W=\mathcal{N}(A)$.
(a) Notice that $A \mathbf{0}_{n}=\mathbf{0}_{m}$. Hence the equation $A X=\mathbf{0}_{m}$ is satisfied by $X=\mathbf{0}_{n}$. It follows that $\mathbf{0}_{n}$ is indeed in W.
(b) Suppose that X_{1} and X_{2} are in W. This means that $A X_{1}=\mathbf{0}_{m}$ and $A X_{2}=\mathbf{0}_{m}$. Let $X=X_{1}+X_{2}$. Then

$$
A X=A\left(X_{1}+X_{2}\right)=A X_{1}+A X_{2}=\mathbf{0}_{m}+\mathbf{0}_{m}=\mathbf{0}_{m}
$$

Therefore, $X=X_{1}+X_{2}$ is in W. This shows that W is closed under addition and so requirement (b) is valid for W.
(c) Suppose that X_{1} is in W. Let c be any scalar. Since X_{1} is in W, we have $A X_{1}=\mathbf{0}_{m}$. Let $X=c X_{1}$. Then

$$
A X=A\left(c X_{1}\right)=c\left(A X_{1}\right)=c \mathbf{0}_{m}=\mathbf{0}_{m}
$$

Therefore, $X=c X_{1}$ is in W. This shows that W is closed under scalar multiplication and so requirement (c) is valid for W.

We have proved that $W=\mathcal{N}(A)$ is a subset of \boldsymbol{R}^{n} satisfying the three subspace requirements. Hence $\mathcal{N}(A)$ is a subspace of \boldsymbol{R}^{n}.

THE DIMENSION THEOREM: If A is an $m \times n$ matrix, then $\operatorname{dim}(\mathcal{N}(A))+\operatorname{dim}(\mathcal{R}(A))=n$.

